1大数据架构东西与组件
企业大数据结构的搭建,多是挑选根据开源技能结构来实现的,这其中就包含Hadoop、Spark、Storm、Flink为主的一系列组件结构,及其生态圈组件。
2深化了解SQL和其它数据库解决方案
大数据工程师需要了解数据库办理体系,深化了解SQL。相同其它数据库解决方案,例如Cassandra或MangoDB也须了解,由于不是每个数据库都是由可识别的标准来构建。
3数据仓库和ETL东西
数据仓库和ETL才能对于大数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL东西,比方StitchData或Segment都十分有用。
4根据Hadoop的剖析
对根据Apache Hadoop的数据处理结构,需要有深化的了解,至少HBase,Hive和MapReduce的知识存储是必需的。
5编码
编码与开发才能是作为大数据工程师的重要要求,主要掌握Java、Scala、Python三门语言,这在大数据当中十分关键。
技术方面:需要学习使用数据源、目标端工具的基本使用(如 oracle MySQL hive等);需要学习etl工具的安装配置常用错误解决(如 kettle DataStage infa sqoop datax等)
理论方面:懂得数仓分层架构,维度建模等。
从ETL的字面来看,它主要包含三大阶段,分别是数据抽取、数据转换、数据加载。
1数据抽取
这个阶段的主要目标是汇总多种数据源,为下一步的转换做准备。
2数据转换
这个阶段是ETL的核心环节,也是最复杂的环节。它的主要目标是将抽取到的各种数据,进行数据的清洗、格式的转换、缺失值填补、剔除重复等 *** 作,最终得到一份格式统一、高度结构化、数据质量高、兼容性好的数据,为后续的分析决策提供可靠的数据支持。
3数据加载
这个阶段的主要目标是把数据加载至目的地,比如数据仓库中。通常的做法是,将处理好的数据写成特定格式(如parquet、csv等)的文件,然后再把文件挂载到指定的表分区上。也有些表的数据量很小,不会采用分区表,而是直接生成最终的数据表。
了解了ETL这部分的工作主要做什么,接下来再来说作为ETL工程师需要具备哪些技能,这些也就是需要学习的重点——
1、精通SQL语言,具备存储过程开发能力,能熟练进行SQL查询优化;
2、熟悉Hive数据仓库设计,了解数据仓库模型及思想、维度建模思想,了解数据仓库;
3、熟悉Hadoop、Spark、Flink、Kafka等相关技术;
4、熟练Python、Java中至少一种语言;
5、熟悉Mysql、Nosql等常见数据库。
通过数据库系统工程师级别(中级资格/工程师)考试的合格人员:
1、能参与应用信息系统的规划、设计、构建、运行和管理,能按照用户需求,设计、建立、运行、维护高质量的数据库和数据仓库;
2、作为数据管理员管理信息系统中的数据资源,作为数据库管理员建立和维护核心数据库;
3、担任数据库系统有关的技术支持,同时具备一定的网络结构设计及组网能力;
4、具有工程师的实际工作能力和业务水平,能指导计算机技术与软件专业助理工程师(或技术员)工作。
对于大数据工程师而言,您至少要掌握以下技能:
一门JVM系语言:当前大数据生态JVM系语言类的比重极大,某种程度上说是垄断也不为过。这里我推荐大家学习Java或Scala,至于Clojure这样的语言上手不易,其实并不推荐大家使用。另外,如今是“母以子贵”的年代,某个大数据框架会带火它的编程语言的流行,比如Docker之于Go、Kafka之于Scala。因此笔者这里建议您至少要精通一门JVM系的语言。值得一提的,一定要弄懂这门语言的多线程模型和内存模型,很多大数据框架的处理模式其实在语言层面和多线程处理模型是类似的,只是大数据框架把它们引申到了多机分布式这个层面。
计算处理框架:严格来说,这分为离线批处理和流式处理。流式处理是未来的趋势,建议大家一定要去学习;而离线批处理其实已经快过时了,它的分批处理思想无法处理无穷数据集,因此其适用范围日益缩小。事实上,Google已经在公司内部正式废弃了以MapReduce为代表的离线处理。因此如果要学习大数据工程,掌握一门实时流式处理框架是必须的。当下主流的框架包括:Apache Samza, Apache Storm, Apache Spark Streaming以及最近一年风头正劲的Apache Flink。当然Apache Kafka也推出了它自己的流式处理框架:Kafka Streams
分布式存储框架:虽说MapReduce有些过时了,但Hadoop的另一个基石HDFS依然坚挺,并且是开源社区最受欢迎的分布式存储,绝对您花时间去学习。如果想深入研究的话,Google的GFS论文也是一定要读的([url=]>资源调度框架:Docker可是整整火了最近一两年。各个公司都在发力基于Docker的容器解决方案,最有名的开源容器调度框架就是K8S了,但同样著名的还有Hadoop的YARN和Apache Mesos。后两者不仅可以调度容器集群,还可以调度非容器集群,非常值得我们学习。
分布式协调框架:有一些通用的功能在所有主流大数据分布式框架中都需要实现,比如服务发现、领导者选举、分布式锁、KV存储等。这些功能也就催生了分布式协调框架的发展。最古老也是最有名的当属Apache Zookeeper了,新一些的包括Consul,etcd等。学习大数据工程,分布式协调框架是不能不了解的, 某种程度上还要深入了解。
KV数据库:典型的就是memcache和Redis了,特别是Redis简直是发展神速。其简洁的API设计和高性能的TPS日益得到广大用户的青睐。即使是不学习大数据,学学Redis都是大有裨益的。
列式存储数据库:笔者曾经花了很长的时间学习Oracle,但不得不承认当下关系型数据库已经慢慢地淡出了人们的视野,有太多的方案可以替代rdbms了。人们针对行式存储不适用于大数据ad-hoc查询这种弊端开发出了列式存储,典型的列式存储数据库就是开源社区的HBASE。实际上列式存储的概念也是出自Google的一篇论文:Google BigTable,有兴趣的话大家最好读一下:
消息队列:大数据工程处理中消息队列作为“削峰填谷”的主力系统是必不可少的,当前该领域内的解决方案有很多,包括ActiveMQ,Kafka等。国内阿里也开源了RocketMQ。这其中的翘楚当属Apache Kafka了。Kafka的很多设计思想都特别契合分布流式数据处理的设计理念。这也难怪,Kafka的原作者Jay Kreps可是当今实时流式处理方面的顶级大神。
伴随数据库连续发展,企业都需要创建数据库来管理和利用信息。而数据库是要有专业人士去进行维护的。霍营电脑培训认为数据库开发工程师重点进行软件研发工作,并且要优化和处理生产环境问题。
数据库开发工程师的技能要求:
1。熟练掌握一种编程语言,明白主流的框架、库使用和原理;
2。掌握计算机数据结构和算法设计,具备Linux *** 作系统基础知识;
3。精通基本网络编程知识,了解多线程编程及技巧;
4。精通Linux、webserver、数据库、缓存相关技术的使用;
5。精通数据库的原理和知识,了解SQL规则和特点;
6。精通Linux系统IO、锁等调优技术;
7。自主学习能力和较强的动手能力;
8。工作认真细心,敢于担当,勤劳稳重,善于思考问题;
9。时间观念强,独立,沟通能力强,有团队协作精神;
如今数据库开发工程师是非常紧缺的。它们工作领域广,大企业都有自己的数据库,都要有数据库开发工程师进行管理。知名企业、政府、学校等是一些非常好的去处。没有基础不要紧的只要关注北大青鸟你的方向就会非常清晰明确
学习方法:只是自学是没用的,并且使你感到投入多收益少后失去学习兴趣,一定要理论结合实践,否则是纸上谈兵。
以上就是关于大数据工程师要学习哪些技术全部的内容,包括:大数据工程师要学习哪些技术、ETL工程师要学什么、数据库系统工程师主要是做什么的怎么 划分等级等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)