大数据是怎么定义的,大数据包括什么?

大数据是怎么定义的,大数据包括什么?,第1张

数据无疑是近些年来科技领域的一个重要概念,随着越来越多的企业开始逐渐参与到大数据产业链中,大数据自身的定义也在不断得到丰富和发展。

要想定义大数据,可以从以下三个方面来进行定义:

第一:大数据重新定义了数据的价值。大数据既代表了技术,同时也代表了一个产业,更代表了一个发展的趋势。大数据技术指的是围绕数据价值化的一系列相关技术,包括数据的采集、存储、安全、分析、呈现等等;大数据产业指的是以大数据技术为基础的产业生态,大数据的产业生态目前尚未完善,还有较大的发展空间;发展趋势指的是大数据将成为一个重要的创新领域。

第二:大数据为智能化社会奠定了基础。人工智能的发展需要三个基础,分别是数据、算力和算法,所以大数据对于人工智能的发展具有重要的意义。目前在人工智能领域之所以在应用效果上有较为明显的改善,一个重要的原因是目前有了大量的数据支撑,这会全面促进算法的训练过程和验证过程,从而提升算法的应用效果。

第三:大数据促进了社会资源的数据化进程。大数据的发展使得数据产生了更大的价值,这个过程会在很大程度上促进社会资源的数据化进程,而更多的社会资源实现数据化之后,大数据的功能边界也会得到不断的拓展,从而带动一系列基于大数据的创新。

最后,大数据之所以重要,一个重要的原因是大数据开辟了一个新的价值领域,大数据将逐渐成为一种重要的生产材料,甚至可以说大数据将是智能化社会的一种新兴能源。

1.测试集:

机器学习学科中,学习样本三部分之一,测试集用来检验最终选择最优的模型的性能如何。

2.训练集:

机器学习学科中,学习样本三部分之一,训练集用于建立模型。验证集用来确定网络结构或者控制模型复杂程度的参数,而测试集则检验最终选择最优的模型的性能如何。

扩展资料

训练集用于监督学习中,监督学习是指利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。

监督学习是从标记的训练数据来推断一个功能的机器学习任务。训练数据包括一套训练示例。在监督学习中,每个实例都是由一个输入对象和一个期望的输出值组成。监督学习算法是分析该训练数据,并产生一个推断的功能,其可以用于映射出新的实例。

大数据环境下的机器学习算法,依据一定的性能标准,对学习结果的重要程度可以予以忽视。 采用分布式和并行计算的方式进行分治策略的实施,可以规避掉噪音数据和冗余带来的干扰,降低存储耗费,同时提高学习算法的运行效率。

参考资料来源:百度百科-测试集

参考资料来源:百度百科-训练集


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9456941.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存