什么是数据挖掘数据挖掘的详细解释!谢谢了,大神帮忙啊

什么是数据挖掘数据挖掘的详细解释!谢谢了,大神帮忙啊,第1张

什么是数据挖掘 数据挖掘 ,在人工智能领域,习惯上又称为数据库中的知识发现(Knowledge Discovery in Database, KDD), 也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。知识发现过程由以下三个阶段组成:(1)数据准备,(2)数据挖掘,(3)结果表达和解释。数据挖掘可以与用户或知识库交互。 并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。 数据挖掘的起源 需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等。 数据挖掘利用了来自如下一些领域的思想: (1) 来自统计学的抽样、估计和假设检验, (2) 人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。

DMS有两种意思:

1、全称为Dealer Management System(汽车经销商管理系统):

主要用于对于汽车公司庞大的销售网络进行管理。汽车4S店是集汽车销售、维修、配件和服务为一体的销售店。

DMS系统不仅涵盖了针对4S店的整车销售、零配件仓库、售后维修服务(含车间管理)、客服服务等,并且在主机厂和经销商之间能成功搭建一个互动交流的信息桥梁,全面满足经销商对“汽车销售、维修服务、配件供应、信息反馈、客户关系”等业务的信息化管理。

2、生源硫化物二甲基硫:

生源硫化物二甲基硫(DMS),是海洋主要的挥发性硫化物,也是大气硫化物的重要来源,其在大气中的氧化产物关系着酸雨形成、全球气候变化等问题。

1、二甲基硫:二甲基硫Dimethyl sulfide无色透明易挥发液体。有难闻的气味。 溶于乙醇和乙醚,难溶于水。

海洋排放的二甲基硫是大气中硫化物的主要天然源。二甲基硫主要是由海洋

生物产生并释放于海水中的, 表层海水中的二甲基硫处于高度过饱和状态。海气间存在的二甲基硫浓度梯度, 使二甲基硫以可观的通量排放入大气, 约占全球天然硫排放量的50%左右, 并最终被氧化为非海盐硫酸盐(NSS-SO42-) , 从而对降水的天然酸性及气候产生影响。

海水中二甲基硫的浓度一般在10~100ng/ L, 含量很低, 不易直接分析。二甲基硫的产生、释放、转化等过程受海洋浮游生物、微生物及物理、化学等诸多因素的影响、其机理尚不完全清楚, 加上二甲基硫本身易吸附、易氧化, 都给样品的采集、保存及测定造成了困难。

参考资料:

百度百科-二甲基硫百度百科-dms百度百科-DMS系统

EXCEL MATLAB Origin 等等

当前流行的图形可视化和数据分析软件有Matlab,Mathmatica和Maple等。这些软件功能强大,可满足科技工作中的许多需要,但使用这些软件需要一定的计算机编程知识和矩阵知识,并熟悉其中大量的函数和命令。而使用Origin就像使用Excel和Word那样简单,只需点击鼠标,选择菜单命令就可以完成大部分工作,获得满意的结果。 但它又比excel要强大些。一般日常的话可以用Excel,然后加载宏,里面有一些分析工具,不过有时需要数据库软件支持

1、神经元网络办法

神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。

2、遗传算法

遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。

3、决策树算法办法

决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。

4、遮盖正例抵触典例办法

它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。

5、数据剖析办法

在数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。

6、含糊集办法

即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。

描述性挖掘和数据挖掘的核心区别是处理的方法不同。

方法是指:

1根据挖掘的数据库类型分类:数据挖掘系统可以根据挖掘的数据库类型分类。数据库系统本身可以根据不同的标准(如数据模型、数据类型或所涉及的应用)分类,每一类可能需要自己的数据挖掘技术。这样,数据挖掘系统就可以相应分类。

2根据挖掘的知识类型分类:数据挖掘系统可以根据所挖掘的知识类型分类,即根据数据挖掘的功能分类,如特征化、区分、关联和相关分析、分类、预测、聚类、离群点分析和演变分析,一个综合的数据挖掘系统通常提供多种和/或集成的数据挖掘功能。

此外,数据挖掘系统还可以根据所挖掘的知识的粒度或抽象层进行区分,包括广义知识(高抽象层)、原始层知识(原始数据层)或多层知识(考虑若干抽象层),一个高级数据挖掘系统应当支持多抽象层的知识发现。

数据挖掘系统还可以分类为挖掘数据的规则性(通常出现的模式)与挖掘数据的奇异性(如异常或离群点)。一般地概念描述、关联和相关分析、分类、预测和聚类挖掘数据的规则性,将离群点作为噪声排除。

3根据所用的技术类型分类:数据挖掘系统也可以根据所用的数据挖掘技术分类。

这些技术可以根据用户交互程度(例如自动系统、交互探查系统、查询驱动系统),或所用的数据分析方法(例如面向数据库或面向数据仓库的技术、机器学习、统计学、可视化、模式识别、神经网络等)描述。

4根据应用分类:数据挖掘系统也可以根据其应用分类。例如,可能有些数据挖掘系统特别适合金融、电信、DNA、股票市场、e-mail等,不同的应用通常需要集成对于该应用特别有效的方法。因此,泛化的全能的数据挖掘系统可能并不适合特定领域的挖掘任务。

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、、地理位置信息等等。第三,数据的来源,直接导致分析结果的准确性和真实性。若数据来源是完整的并且真实,最终的分析结果以及决定将更加准确。第四,处理速度快,1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”

从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。

搜索下各种百科,上面都有。说白了,就是数据量非常庞大。这确实是近几年的热点问题。

以上就是关于什么是数据挖掘数据挖掘的详细解释!谢谢了,大神帮忙啊全部的内容,包括:什么是数据挖掘数据挖掘的详细解释!谢谢了,大神帮忙啊、dms是什么意思、常用的数据分析工具有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9464533.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存