移动云的底层架构是基于什么

移动云的底层架构是基于什么,第1张

基于单体架构。

单体架单体架构是比较初级,典型的三级架构,前端(Web/手机端)+中间业务逻辑层+数据库层。这是一种典型的Java Spring MVC或者Python Django框架的应用。其架构图如下所示: 

单体架构的应用比较容易部署、测试, 在项目的初期,单体应用可以很好地运行。然而,随着需求的不断增加, 越来越多的人加入开发团队,代码库也在飞速地膨胀。慢慢地,单体应用变得越来越臃肿,可维护性、灵活性逐渐降低,维护成本越来越高。        

下面是单体架构应用的一些缺点:

复杂性高:以一个百万行级别的单体应用为例,整个项目包含的模块非常多、模块的边界模糊、 依赖关系不清晰、 代码质量参差不齐、 混乱地堆砌在一起。可想而知整个项目非常复杂。每次修改代码都心惊胆战, 甚至添加一个简单的功能, 或者修改一个Bug都会带来隐含的缺陷。

技术债务:随着时间推移、需求变更和人员更迭,会逐渐形成应用程序的技术债务, 并且越积 越多。「不坏不修」, 这在软件开发中非常常见, 在单体应用中这种思想更甚。已使用的系统设计或代码难以被修改,因为应用程序中的其他模块可能会以意料之外的方式使用它。

部署频率低:随着代码的增多,构建和部署的时间也会增加。而在单体应用中, 每次功能的变更或缺陷的修复都会导致需要重新部署整个应用。全量部署的方式耗时长、 影响范围大、 风险高, 这使得单体应用项目上线部署的频率较低。而部署频率低又导致两次发布之间会有大量的功能变更和缺陷修复,出错率比较高。

可靠性差:某个应用Bug,例如死循环、内存溢出等, 可能会导致整个应用的崩溃。

扩展能力受限:单体应用只能作为一个整体进行扩展,无法根据业务模块的需要进行伸缩。例如,应用中有的模块是计算密集型的,它需要强劲的CPU;有的模块则是IO密集型的,需要更大的内存。由于这些模块部署在一起,不得不在硬件的选择上做出妥协。

阻碍技术创新:单体应用往往使用统一的技术平台或方案解决所有的问题, 团队中的每个成员 都必须使用相同的开发语言和框架,要想引入新框架或新技术平台会非常困难。

你问的应该是数据库三级模式

引自百度百科,觉得里面解释的不错就转发来给你看看>

索引类型:

根据数据库的功能,可以在数据库设计器中创建索引:唯一索引、主键索引和聚集索引。

尽管唯一索引有助于定位信息,但为获得最佳性能结果,建议改用主键或唯一约束。

唯一索引:

UNIQUE

例如:create

unique

index

stusno

on

student(sno);

表明此索引的每一个索引值只对应唯一的数据记录,对于单列惟一性索引,这保证单列不包含重复的值。对于多列惟一性索引,保证多个值的组合不重复。

主键索引:

primary

key

数据库表经常有一列或列组合,其值唯一标识表中的每一行。该列称为表的主键。

在数据库关系图中为表定义主键将自动创建主键索引,主键索引是唯一索引的特定类型。该索引要求主键中的每个值都唯一。当在查询中使用主键索引时,它还允许对数据的快速访问。

聚集索引(也叫聚簇索引):cluster

在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。

如果某索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。与非聚集索引相比,聚集索引通常提供更快的数据访问速度。

索引的实现方式

1

B+树

我们经常听到B+树就是这个概念,用这个树的目的和红黑树差不多,也是为了尽量保持树的平衡,当然红黑树是二叉树,但B+树就不是二叉树了,节点下面可以有多个子节点,数据库开发商会设置子节点数的一个最大值,这个值不会太小,所以B+树一般来说比较矮胖,而红黑树就比较瘦高了。

关于B+树的插入,删除,会涉及到一些算法以保持树的平衡,这里就不详述了。ORACLE的默认索引就是这种结构的。

如果经常需要同时对两个字段进行AND查询,那么使用两个单独索引不如建立一个复合索引,因为两个单独索引通常数据库只能使用其中一个,而使用复合索引因为索引本身就对应到两个字段上的,效率会有很大提高。

2

散列索引

第二种索引叫做散列索引,就是通过散列函数来定位的一种索引,不过很少有单独使用散列索引的,反而是散列文件组织用的比较多。

散列文件组织就是根据一个键通过散列计算把对应的记录都放到同一个槽中,这样的话相同的键值对应的记录就一定是放在同一个文件里了,也就减少了文件读取的次数,提高了效率。

散列索引呢就是根据对应键的散列码来找到最终的索引项的技术,其实和B树就差不多了,也就是一种索引之上的二级辅助索引,我理解散列索引都是二级或更高级的稀疏索引,否则桶就太多了,效率也不会很高。

3

位图索引

位图索引是一种针对多个字段的简单查询设计一种特殊的索引,适用范围比较小,只适用于字段值固定并且值的种类很少的情况,比如性别,只能有男和女,或者级别,状态等等,并且只有在同时对多个这样的字段查询时才能体现出位图的优势。

位图的基本思想就是对每一个条件都用0或者1来表示,如有5条记录,性别分别是男,女,男,男,女,那么如果使用位图索引就会建立两个位图,对应男的10110和对应女的01001,这样做有什么好处呢,就是如果同时对多个这种类型的字段进行and或or查询时,可以使用按位与和按位或来直接得到结果了。

可以参考文章:>

因为我是学java的 我说说自己的思路吧

首先要连接数据库 因为java是面向对象的 所以要封装一个类用来连接数据库

然后就可以直接通过SQL语句赋值

insert into table(name, age) values ('张三','20');

具体C#数据库怎么连接你可以百度 我想思想是一样的

望采纳

刚才是数据库直接赋值,你要的赋值类似于表单提交呗?注册功能?

数据库连接好了 写一个方法checkName()与数据库里面的数据对比一半name唯一或者ID唯一

在实体bean 写好类的属性 name,age

然后给他set与get方面 通过页面取值和赋值

五种大数据处理架构

大数据是收集、整理、处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称。虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性、规模,以及价值在最近几年才经历了大规模扩展。

本文将介绍大数据系统一个最基本的组件:处理框架。处理框架负责对系统中的数据进行计算,例如处理从非易失存储中读取的数据,或处理刚刚摄入到系统中的数据。数据的计算则是指从大量单一数据点中提取信息和见解的过程。

下文将介绍这些框架:

· 仅批处理框架:

Apache Hadoop

· 仅流处理框架:

Apache Storm

Apache Samza

· 混合框架:

Apache Spark

Apache Flink

大数据处理框架是什么?

处理框架和处理引擎负责对数据系统中的数据进行计算。虽然“引擎”和“框架”之间的区别没有什么权威的定义,但大部分时候可以将前者定义为实际负责处理数据 *** 作的组件,后者则可定义为承担类似作用的一系列组件。

例如Apache Hadoop可以看作一种以MapReduce作为默认处理引擎的处理框架。引擎和框架通常可以相互替换或同时使用。例如另一个框架Apache Spark可以纳入Hadoop并取代MapReduce。组件之间的这种互 *** 作性是大数据系统灵活性如此之高的原因之一。

虽然负责处理生命周期内这一阶段数据的系统通常都很复杂,但从广义层面来看它们的目标是非常一致的:通过对数据执行 *** 作提高理解能力,揭示出数据蕴含的模式,并针对复杂互动获得见解。

为了简化这些组件的讨论,我们会通过不同处理框架的设计意图,按照所处理的数据状态对其进行分类。一些系统可以用批处理方式处理数据,一些系统可以用流方式处理连续不断流入系统的数据。此外还有一些系统可以同时处理这两类数据。

在深入介绍不同实现的指标和结论之前,首先需要对不同处理类型的概念进行一个简单的介绍。

批处理系统

批处理在大数据世界有着悠久的历史。批处理主要 *** 作大容量静态数据集,并在计算过程完成后返回结果。

批处理模式中使用的数据集通常符合下列特征…

· 有界:批处理数据集代表数据的有限集合

· 持久:数据通常始终存储在某种类型的持久存储位置中

· 大量:批处理 *** 作通常是处理极为海量数据集的唯一方法

批处理非常适合需要访问全套记录才能完成的计算工作。例如在计算总数和平均数时,必须将数据集作为一个整体加以处理,而不能将其视作多条记录的集合。这些 *** 作要求在计算进行过程中数据维持自己的状态。

需要处理大量数据的任务通常最适合用批处理 *** 作进行处理。无论直接从持久存储设备处理数据集,或首先将数据集载入内存,批处理系统在设计过程中就充分考虑了数据的量,可提供充足的处理资源。由于批处理在应对大量持久数据方面的表现极为出色,因此经常被用于对历史数据进行分析。

大量数据的处理需要付出大量时间,因此批处理不适合对处理时间要求较高的场合。

Apache Hadoop

Apache Hadoop是一种专用于批处理的处理框架。Hadoop是首个在开源社区获得极大关注的大数据框架。基于谷歌有关海量数据处理所发表的多篇论文与经验的Hadoop重新实现了相关算法和组件堆栈,让大规模批处理技术变得更易用。

新版Hadoop包含多个组件,即多个层,通过配合使用可处理批数据:

· HDFS:HDFS是一种分布式文件系统层,可对集群节点间的存储和复制进行协调。HDFS确保了无法避免的节点故障发生后数据依然可用,可将其用作数据来源,可用于存储中间态的处理结果,并可存储计算的最终结果。

· YARN:YARN是Yet Another Resource Negotiator(另一个资源管理器)的缩写,可充当Hadoop堆栈的集群协调组件。该组件负责协调并管理底层资源和调度作业的运行。通过充当集群资源的接口,YARN使得用户能在Hadoop集群中使用比以往的迭代方式运行更多类型的工作负载。

· MapReduce:MapReduce是Hadoop的原生批处理引擎。

批处理模式

Hadoop的处理功能来自MapReduce引擎。MapReduce的处理技术符合使用键值对的map、shuffle、reduce算法要求。基本处理过程包括:

· 从HDFS文件系统读取数据集

· 将数据集拆分成小块并分配给所有可用节点

· 针对每个节点上的数据子集进行计算(计算的中间态结果会重新写入HDFS)

· 重新分配中间态结果并按照键进行分组

· 通过对每个节点计算的结果进行汇总和组合对每个键的值进行“Reducing”

· 将计算而来的最终结果重新写入 HDFS

优势和局限

由于这种方法严重依赖持久存储,每个任务需要多次执行读取和写入 *** 作,因此速度相对较慢。但另一方面由于磁盘空间通常是服务器上最丰富的资源,这意味着MapReduce可以处理非常海量的数据集。同时也意味着相比其他类似技术,Hadoop的MapReduce通常可以在廉价硬件上运行,因为该技术并不需要将一切都存储在内存中。MapReduce具备极高的缩放潜力,生产环境中曾经出现过包含数万个节点的应用。

MapReduce的学习曲线较为陡峭,虽然Hadoop生态系统的其他周边技术可以大幅降低这一问题的影响,但通过Hadoop集群快速实现某些应用时依然需要注意这个问题。

围绕Hadoop已经形成了辽阔的生态系统,Hadoop集群本身也经常被用作其他软件的组成部件。很多其他处理框架和引擎通过与Hadoop集成也可以使用HDFS和YARN资源管理器。

总结

Apache Hadoop及其MapReduce处理引擎提供了一套久经考验的批处理模型,最适合处理对时间要求不高的非常大规模数据集。通过非常低成本的组件即可搭建完整功能的Hadoop集群,使得这一廉价且高效的处理技术可以灵活应用在很多案例中。与其他框架和引擎的兼容与集成能力使得Hadoop可以成为使用不同技术的多种工作负载处理平台的底层基础。

流处理系统

流处理系统会对随时进入系统的数据进行计算。相比批处理模式,这是一种截然不同的处理方式。流处理方式无需针对整个数据集执行 *** 作,而是对通过系统传输的每个数据项执行 *** 作。

· 流处理中的数据集是“无边界”的,这就产生了几个重要的影响:

· 完整数据集只能代表截至目前已经进入到系统中的数据总量。

· 工作数据集也许更相关,在特定时间只能代表某个单一数据项。

处理工作是基于事件的,除非明确停止否则没有“尽头”。处理结果立刻可用,并会随着新数据的抵达继续更新。

流处理系统可以处理几乎无限量的数据,但同一时间只能处理一条(真正的流处理)或很少量(微批处理,Micro-batch Processing)数据,不同记录间只维持最少量的状态。虽然大部分系统提供了用于维持某些状态的方法,但流处理主要针对副作用更少,更加功能性的处理(Functional processing)进行优化。

功能性 *** 作主要侧重于状态或副作用有限的离散步骤。针对同一个数据执行同一个 *** 作会或略其他因素产生相同的结果,此类处理非常适合流处理,因为不同项的状态通常是某些困难、限制,以及某些情况下不需要的结果的结合体。因此虽然某些类型的状态管理通常是可行的,但这些框架通常在不具备状态管理机制时更简单也更高效。

此类处理非常适合某些类型的工作负载。有近实时处理需求的任务很适合使用流处理模式。分析、服务器或应用程序错误日志,以及其他基于时间的衡量指标是最适合的类型,因为对这些领域的数据变化做出响应对于业务职能来说是极为关键的。流处理很适合用来处理必须对变动或峰值做出响应,并且关注一段时间内变化趋势的数据。

Apache Storm

Apache Storm是一种侧重于极低延迟的流处理框架,也许是要求近实时处理的工作负载的最佳选择。该技术可处理非常大量的数据,通过比其他解决方案更低的延迟提供结果。

流处理模式

Storm的流处理可对框架中名为Topology(拓扑)的DAG(Directed Acyclic Graph,有向无环图)进行编排。这些拓扑描述了当数据片段进入系统后,需要对每个传入的片段执行的不同转换或步骤。

拓扑包含:

· Stream:普通的数据流,这是一种会持续抵达系统的无边界数据。

· Spout:位于拓扑边缘的数据流来源,例如可以是API或查询等,从这里可以产生待处理的数据。

· Bolt:Bolt代表需要消耗流数据,对其应用 *** 作,并将结果以流的形式进行输出的处理步骤。Bolt需要与每个Spout建立连接,随后相互连接以组成所有必要的处理。在拓扑的尾部,可以使用最终的Bolt输出作为相互连接的其他系统的输入。

Storm背后的想法是使用上述组件定义大量小型的离散 *** 作,随后将多个组件组成所需拓扑。默认情况下Storm提供了“至少一次”的处理保证,这意味着可以确保每条消息至少可以被处理一次,但某些情况下如果遇到失败可能会处理多次。Storm无法确保可以按照特定顺序处理消息。

为了实现严格的一次处理,即有状态处理,可以使用一种名为Trident的抽象。严格来说不使用Trident的Storm通常可称之为Core Storm。Trident会对Storm的处理能力产生极大影响,会增加延迟,为处理提供状态,使用微批模式代替逐项处理的纯粹流处理模式。

为避免这些问题,通常建议Storm用户尽可能使用Core Storm。然而也要注意,Trident对内容严格的一次处理保证在某些情况下也比较有用,例如系统无法智能地处理重复消息时。如果需要在项之间维持状态,例如想要计算一个小时内有多少用户点击了某个链接,此时Trident将是你唯一的选择。尽管不能充分发挥框架与生俱来的优势,但Trident提高了Storm的灵活性。

Trident拓扑包含:

· 流批(Stream batch):这是指流数据的微批,可通过分块提供批处理语义。

· *** 作(Operation):是指可以对数据执行的批处理过程。

优势和局限

目前来说Storm可能是近实时处理领域的最佳解决方案。该技术可以用极低延迟处理数据,可用于希望获得最低延迟的工作负载。如果处理速度直接影响用户体验,例如需要将处理结果直接提供给访客打开的网站页面,此时Storm将会是一个很好的选择。

Storm与Trident配合使得用户可以用微批代替纯粹的流处理。虽然借此用户可以获得更大灵活性打造更符合要求的工具,但同时这种做法会削弱该技术相比其他解决方案最大的优势。话虽如此,但多一种流处理方式总是好的。

Core Storm无法保证消息的处理顺序。Core Storm为消息提供了“至少一次”的处理保证,这意味着可以保证每条消息都能被处理,但也可能发生重复。Trident提供了严格的一次处理保证,可以在不同批之间提供顺序处理,但无法在一个批内部实现顺序处理。

在互 *** 作性方面,Storm可与Hadoop的YARN资源管理器进行集成,因此可以很方便地融入现有Hadoop部署。除了支持大部分处理框架,Storm还可支持多种语言,为用户的拓扑定义提供了更多选择。

总结

对于延迟需求很高的纯粹的流处理工作负载,Storm可能是最适合的技术。该技术可以保证每条消息都被处理,可配合多种编程语言使用。由于Storm无法进行批处理,如果需要这些能力可能还需要使用其他软件。如果对严格的一次处理保证有比较高的要求,此时可考虑使用Trident。不过这种情况下其他流处理框架也许更适合。

Apache Samza

Apache Samza是一种与Apache Kafka消息系统紧密绑定的流处理框架。虽然Kafka可用于很多流处理系统,但按照设计,Samza可以更好地发挥Kafka独特的架构优势和保障。该技术可通过Kafka提供容错、缓冲,以及状态存储。

Samza可使用YARN作为资源管理器。这意味着默认情况下需要具备Hadoop集群(至少具备HDFS和YARN),但同时也意味着Samza可以直接使用YARN丰富的内建功能。

流处理模式

Samza依赖Kafka的语义定义流的处理方式。Kafka在处理数据时涉及下列概念:

· Topic(话题):进入Kafka系统的每个数据流可称之为一个话题。话题基本上是一种可供消耗方订阅的,由相关信息组成的数据流。

· Partition(分区):为了将一个话题分散至多个节点,Kafka会将传入的消息划分为多个分区。分区的划分将基于键(Key)进行,这样可以保证包含同一个键的每条消息可以划分至同一个分区。分区的顺序可获得保证。

· Broker(代理):组成Kafka集群的每个节点也叫做代理。

· Producer(生成方):任何向Kafka话题写入数据的组件可以叫做生成方。生成方可提供将话题划分为分区所需的键。

· Consumer(消耗方):任何从Kafka读取话题的组件可叫做消耗方。消耗方需要负责维持有关自己分支的信息,这样即可在失败后知道哪些记录已经被处理过了。

由于Kafka相当于永恒不变的日志,Samza也需要处理永恒不变的数据流。这意味着任何转换创建的新数据流都可被其他组件所使用,而不会对最初的数据流产生影响。

优势和局限

乍看之下,Samza对Kafka类查询系统的依赖似乎是一种限制,然而这也可以为系统提供一些独特的保证和功能,这些内容也是其他流处理系统不具备的。

例如Kafka已经提供了可以通过低延迟方式访问的数据存储副本,此外还可以为每个数据分区提供非常易用且低成本的多订阅者模型。所有输出内容,包括中间态的结果都可写入到Kafka,并可被下游步骤独立使用。

这种对Kafka的紧密依赖在很多方面类似于MapReduce引擎对HDFS的依赖。虽然在批处理的每个计算之间对HDFS的依赖导致了一些严重的性能问题,但也避免了流处理遇到的很多其他问题。

Samza与Kafka之间紧密的关系使得处理步骤本身可以非常松散地耦合在一起。无需事先协调,即可在输出的任何步骤中增加任意数量的订阅者,对于有多个团队需要访问类似数据的组织,这一特性非常有用。多个团队可以全部订阅进入系统的数据话题,或任意订阅其他团队对数据进行过某些处理后创建的话题。这一切并不会对数据库等负载密集型基础架构造成额外的压力。

直接写入Kafka还可避免回压(Backpressure)问题。回压是指当负载峰值导致数据流入速度超过组件实时处理能力的情况,这种情况可能导致处理工作停顿并可能丢失数据。按照设计,Kafka可以将数据保存很长时间,这意味着组件可以在方便的时候继续进行处理,并可直接重启动而无需担心造成任何后果。

Samza可以使用以本地键值存储方式实现的容错检查点系统存储数据。这样Samza即可获得“至少一次”的交付保障,但面对由于数据可能多次交付造成的失败,该技术无法对汇总后状态(例如计数)提供精确恢复。

Samza提供的高级抽象使其在很多方面比Storm等系统提供的基元(Primitive)更易于配合使用。目前Samza只支持JVM语言,这意味着它在语言支持方面不如Storm灵活。

总结

对于已经具备或易于实现Hadoop和Kafka的环境,Apache Samza是流处理工作负载一个很好的选择。Samza本身很适合有多个团队需要使用(但相互之间并不一定紧密协调)不同处理阶段的多个数据流的组织。Samza可大幅简化很多流处理工作,可实现低延迟的性能。如果部署需求与当前系统不兼容,也许并不适合使用,但如果需要极低延迟的处理,或对严格的一次处理语义有较高需求,此时依然适合考虑。

混合处理系统:批处理和流处理

一些处理框架可同时处理批处理和流处理工作负载。这些框架可以用相同或相关的组件和API处理两种类型的数据,借此让不同的处理需求得以简化。

如你所见,这一特性主要是由Spark和Flink实现的,下文将介绍这两种框架。实现这样的功能重点在于两种不同处理模式如何进行统一,以及要对固定和不固定数据集之间的关系进行何种假设。

虽然侧重于某一种处理类型的项目会更好地满足具体用例的要求,但混合框架意在提供一种数据处理的通用解决方案。这种框架不仅可以提供处理数据所需的方法,而且提供了自己的集成项、库、工具,可胜任图形分析、机器学习、交互式查询等多种任务。

Apache Spark

Apache Spark是一种包含流处理能力的下一代批处理框架。与Hadoop的MapReduce引擎基于各种相同原则开发而来的Spark主要侧重于通过完善的内存计算和处理优化机制加快批处理工作负载的运行速度。

Spark可作为独立集群部署(需要相应存储层的配合),或可与Hadoop集成并取代MapReduce引擎。

批处理模式

与MapReduce不同,Spark的数据处理工作全部在内存中进行,只在一开始将数据读入内存,以及将最终结果持久存储时需要与存储层交互。所有中间态的处理结果均存储在内存中。

虽然内存中处理方式可大幅改善性能,Spark在处理与磁盘有关的任务时速度也有很大提升,因为通过提前对整个任务集进行分析可以实现更完善的整体式优化。为此Spark可创建代表所需执行的全部 *** 作,需要 *** 作的数据,以及 *** 作和数据之间关系的Directed Acyclic Graph(有向无环图),即DAG,借此处理器可以对任务进行更智能的协调。

为了实现内存中批计算,Spark会使用一种名为Resilient Distributed Dataset(d性分布式数据集),即RDD的模型来处理数据。这是一种代表数据集,只位于内存中,永恒不变的结构。针对RDD执行的 *** 作可生成新的RDD。每个RDD可通过世系(Lineage)回溯至父级RDD,并最终回溯至磁盘上的数据。Spark可通过RDD在无需将每个 *** 作的结果写回磁盘的前提下实现容错。

流处理模式

流处理能力是由Spark Streaming实现的。Spark本身在设计上主要面向批处理工作负载,为了弥补引擎设计和流处理工作负载特征方面的差异,Spark实现了一种叫做微批(Micro-batch)的概念。在具体策略方面该技术可以将数据流视作一系列非常小的“批”,借此即可通过批处理引擎的原生语义进行处理。

Spark Streaming会以亚秒级增量对流进行缓冲,随后这些缓冲会作为小规模的固定数据集进行批处理。这种方式的实际效果非常好,但相比真正的流处理框架在性能方面依然存在不足。

优势和局限

使用Spark而非Hadoop MapReduce的主要原因是速度。在内存计算策略和先进的DAG调度等机制的帮助下,Spark可以用更快速度处理相同的数据集。

Spark的另一个重要优势在于多样性。该产品可作为独立集群部署,或与现有Hadoop集群集成。该产品可运行批处理和流处理,运行一个集群即可处理不同类型的任务。

除了引擎自身的能力外,围绕Spark还建立了包含各种库的生态系统,可为机器学习、交互式查询等任务提供更好的支持。相比MapReduce,Spark任务更是“众所周知”地易于编写,因此可大幅提高生产力。

为流处理系统采用批处理的方法,需要对进入系统的数据进行缓冲。缓冲机制使得该技术可以处理非常大量的传入数据,提高整体吞吐率,但等待缓冲区清空也会导致延迟增高。这意味着Spark Streaming可能不适合处理对延迟有较高要求的工作负载。

由于内存通常比磁盘空间更贵,因此相比基于磁盘的系统,Spark成本更高。然而处理速度的提升意味着可以更快速完成任务,在需要按照小时数为资源付费的环境中,这一特性通常可以抵消增加的成本。

Spark内存计算这一设计的另一个后果是,如果部署在共享的集群中可能会遇到资源不足的问题。相比HadoopMapReduce,Spark的资源消耗更大,可能会对需要在同一时间使用集群的其他任务产生影响。从本质来看,Spark更不适合与Hadoop堆栈的其他组件共存一处。

总结

Spark是多样化工作负载处理任务的最佳选择。Spark批处理能力以更高内存占用为代价提供了无与伦比的速度优势。对于重视吞吐率而非延迟的工作负载,则比较适合使用Spark Streaming作为流处理解决方案。

Apache Flink

Apache Flink是一种可以处理批处理任务的流处理框架。该技术可将批处理数据视作具备有限边界的数据流,借此将批处理任务作为流处理的子集加以处理。为所有处理任务采取流处理为先的方法会产生一系列有趣的副作用。

这种流处理为先的方法也叫做Kappa架构,与之相对的是更加被广为人知的Lambda架构(该架构中使用批处理作为主要处理方法,使用流作为补充并提供早期未经提炼的结果)。Kappa架构中会对一切进行流处理,借此对模型进行简化,而这一切是在最近流处理引擎逐渐成熟后才可行的。

流处理模型

Flink的流处理模型在处理传入数据时会将每一项视作真正的数据流。Flink提供的DataStream API可用于处理无尽的数据流。Flink可配合使用的基本组件包括:

· Stream(流)是指在系统中流转的,永恒不变的无边界数据集

· Operator( *** 作方)是指针对数据流执行 *** 作以产生其他数据流的功能

· Source(源)是指数据流进入系统的入口点

· Sink(槽)是指数据流离开Flink系统后进入到的位置,槽可以是数据库或到其他系统的连接器

为了在计算过程中遇到问题后能够恢复,流处理任务会在预定时间点创建快照。为了实现状态存储,Flink可配合多种状态后端系统使用,具体取决于所需实现的复杂度和持久性级别。

此外Flink的流处理能力还可以理解“事件时间”这一概念,这是指事件实际发生的时间,此外该功能还可以处理会话。这意味着可以通过某种有趣的方式确保执行顺序和分组。

批处理模型

Flink的批处理模型在很大程度上仅仅是对流处理模型的扩展。此时模型不再从持续流中读取数据,而是从持久存储中以流的形式读取有边界的数据集。Flink会对这些处理模型使用完全相同的运行时。

Flink可以对批处理工作负载实现一定的优化。例如由于批处理 *** 作可通过持久存储加以支持,Flink可以不对批处理工作负载创建快照。数据依然可以恢复,但常规处理 *** 作可以执行得更快。

另一个优化是对批处理任务进行分解,这样即可在需要的时候调用不同阶段和组件。借此Flink可以与集群的其他用户更好地共存。对任务提前进行分析使得Flink可以查看需要执行的所有 *** 作、数据集的大小,以及下游需要执行的 *** 作步骤,借此实现进一步的优化。

优势和局限

Flink目前是处理框架领域一个独特的技术。虽然Spark也可以执行批处理和流处理,但Spark的流处理采取的微批架构使其无法适用于很多用例。Flink流处理为先的方法可提供低延迟,高吞吐率,近乎逐项处理的能力。

Flink的很多组件是自行管理的。虽然这种做法较为罕见,但出于性能方面的原因,该技术可自行管理内存,无需依赖原生的Java垃圾回收机制。与Spark不同,待处理数据的特征发生变化后Flink无需手工优化和调整,并且该技术也可以自行处理数据分区和自动缓存等 *** 作。

Flink会通过多种方式对工作进行分许进而优化任务。这种分析在部分程度上类似于SQL查询规划器对关系型数据库所做的优化,可针对特定任务确定最高效的实现方法。该技术还支持多阶段并行执行,同时可将受阻任务的数据集合在一起。对于迭代式任务,出于性能方面的考虑,Flink会尝试在存储数据的节点上执行相应的计算任务。此外还可进行“增量迭代”,或仅对数据中有改动的部分进行迭代。

在用户工具方面,Flink提供了基于Web的调度视图,借此可轻松管理任务并查看系统状态。用户也可以查看已提交任务的优化方案,借此了解任务最终是如何在集群中实现的。对于分析类任务,Flink提供了类似SQL的查询,图形化处理,以及机器学习库,此外还支持内存计算。

Flink能很好地与其他组件配合使用。如果配合Hadoop 堆栈使用,该技术可以很好地融入整个环境,在任何时候都只占用必要的资源。该技术可轻松地与YARN、HDFS和Kafka 集成。在兼容包的帮助下,Flink还可以运行为其他处理框架,例如Hadoop和Storm编写的任务。

目前Flink最大的局限之一在于这依然是一个非常“年幼”的项目。现实环境中该项目的大规模部署尚不如其他处理框架那么常见,对于Flink在缩放能力方面的局限目前也没有较为深入的研究。随着快速开发周期的推进和兼容包等功能的完善,当越来越多的组织开始尝试时,可能会出现越来越多的Flink部署

总结

Flink提供了低延迟流处理,同时可支持传统的批处理任务。Flink也许最适合有极高流处理需求,并有少量批处理任务的组织。该技术可兼容原生Storm和Hadoop程序,可在YARN管理的集群上运行,因此可以很方便地进行评估。快速进展的开发工作使其值得被大家关注。

结论

大数据系统可使用多种处理技术。

对于仅需要批处理的工作负载,如果对时间不敏感,比其他解决方案实现成本更低的Hadoop将会是一个好选择。

对于仅需要流处理的工作负载,Storm可支持更广泛的语言并实现极低延迟的处理,但默认配置可能产生重复结果并且无法保证顺序。Samza与YARN和Kafka紧密集成可提供更大灵活性,更易用的多团队使用,以及更简单的复制和状态管理。

对于混合型工作负载,Spark可提供高速批处理和微批处理模式的流处理。该技术的支持更完善,具备各种集成库和工具,可实现灵活的集成。Flink提供了真正的流处理并具备批处理能力,通过深度优化可运行针对其他平台编写的任务,提供低延迟的处理,但实际应用方面还为时过早。

最适合的解决方案主要取决于待处理数据的状态,对处理所需时间的需求,以及希望得到的结果。具体是使用全功能解决方案或主要侧重于某种项目的解决方案,这个问题需要慎重权衡。随着逐渐成熟并被广泛接受,在评估任何新出现的创新型解决方案时都需要考虑类似的问题。

三级结构的组织形式称为数据库的体系结构或数据抽象的三个级别。这个结构是于1975年在美国ANSI/X3/SPARC(美国国家标准协会的计算机与信息处理委员会中的标准计划与需求委员会)数据库小组的报告中提出的。

1141三级数据视图

数据抽象的三个级别又称为三级数据视图,是不同层次用户(人员)从不同角度所看到的数据组织形式。

(1) 外部视图 第一层的数据组织形式是面向应用的,是应用程序员开发应用程序时所使用的数据组织形式,是应用程序员所看到的数据的逻辑结构,是用户数据视图,称为外部视图。外部视图可有多个。这一层的最大特点是以各类用户的需求为出发点,构造满足其需求的最佳逻辑结构。

(2) 全局视图 第二层的数据组织形式是面向全局应用的,是全局数据的组织形式,是数据库管理人员所看到的全体数据的逻辑组织形式,称为全局视图,全局视图仅有一个。这一层的特点是对全局应用最佳的逻辑结构形式。

(3) 存储视图 第三层的数据组织形式是面向存储的,是按照物理存储最优的策略所组织形式,是系统维护人员所看到的数据结构,称为存储视图。存储视图只有一个。这一层的特点是物理存储最佳的结构形式。

外部视图是全局视图的逻辑子集,全局视图是外部视图的逻辑汇总和综合,存储视图是全局视图的具体实现。三级视图之间的联系由二级映射实现。外部视图和全局视图之间的映射称为逻辑映射,全局视图和存储视图之间的映射称为物理映射。

1142 三级模式

三级视图是用图、表等形式描述的,具有简单、直观的优点。但是,这种形式目前还不能被计算机直接识别。为了在计算机系统中实现数据的三级组织形式,必须用计算机可以识别的语言对其进行描述。DBMS提供了这种数据描述语言(Data Description Language 简记为DDL)。我们称用DDL精确定义数据视图的程序为模式(Scheme)。与三级视图对应的是三级模式。

(1) 子模式定义外部视图的模式称外模式,也称子模式。它由对用户数据文件的逻辑结构描述以及和全局视图中文件的对应关系的描述组成,用DBMS提供的子模式DDL定义。一个子模式可以由多个用户共享,而一个用户只能使用一个子模式。

(2) 模式  定义全局视图的模式称逻辑模式,简称模式。它由对全局视图中全体数据文件的逻辑结构描述以及和存储视图中文件的对应关系的描述组成,用DBMS提供的模式DDL定义。逻辑结构的描述包括记录的型(组成记录的数据项名、类型、取值范围等),还有记录之间的联系,数据的完整性、安全保密要求等。

(3) 内模式  定义存储视图的模式称内模式,又称物理模式。它由对存储视图中全体数据文件的存储结构的描述和对存储介质参数的描述组成,用DBMS提供的内模式DDL定义。存储结构的描述包括记录值的存储方式(顺序存储、hash方法、B树结构等),索引的组织方式等。

三级模式的结构如图18所示。

三级模式所描述的仅仅是数据的组织框架,而不是数据本身。在内模式这个框架填上具体数据就构成物理数据库,它是外部存储器上真实存在的数据集合。模式框架下的数据集合是概念数据库,它仅是物理数据库的逻辑映像。子模式框架下的数据集合是用户数据库,它是概念数据库的逻辑子集。

我虽然没参与过微博底层的开发,如果是我设计这个数据库的话我会用2张表解决这个问题

第一张表 用户信息表, 主要依靠ID主键识别用户

第二张表,关系表, 关键col3列 前两列 分别是 好友源 和 好友目标 ,第三列是 关系状态

然后加了好友 只要不断地 在第二张表加入 新行 比如

用户A,用户C ,好友

用户A,用户B ,黑名单

用户B,用户A, 好友

如果是QQ这类 检索关系时候 0, 1字段一起搜索ID 就是互为好友

微博这种 就是单向的 关注。

大概就是这样的模型

可能的问题是用户过多时候表2可能会非常巨大。检索速度可能会受影响

用资源换效率的方式

还可以每个用户一张表

数据库系统的内部结构体系简介

计算机安全是计算机技术的一个分支,其目标包括保护信息免受未经授权的访问、中断和修改,同时为系统的预期用户保持系统的可访问性和可用性。下面是我收集的数据库系统的内部结构体系,希望大家认真阅读!

数据库系统的内部具有三级模式与二级映射。

1)数据库系统的三级模式

数据模式是数据库系统中数据结构的一种表示形式,它具有不同的层次与结构方式。

(1)概念模式

概念模式是数据库系统中全局数据逻辑结构的描述,是全体用户公共数据视图。概念模式主要描述数据的概念记录类型以及它们之间的关系,还包括一些数据间的语义约束。

(2)外模式

外模式又称子模式或用户模式,是用户的数据视图,即用户见到的数据模式。

概念模式给出系统全局的数据描述而外模式则给出每个用户的局部数据描述。

(3)内模式

内模式又称物理模式,它给出数据库物理存储结构与物理存储方法,如数据存储的文件结构、索引、集簇及hash等存取方式与存取路径,内模式的物理性主要体现在 *** 作系统及文件级上。

内模式对一般的用户是透明的,但它的设计直接影响到数据库系统的性能。

模式的三个级别层次反映了模式的三个不同环境以及它们的不同要求,其中内模式处于最底层,它反映数据在计算机物理结构中的实际存储形式,概念模式牌中层,它反映了设计者的数据全局逻辑要求,而外模式处于最外层,通过两种映射由物理数据库映射而成它反映用户对数据的要求。

2)数据库系统的二级映射

数据库系统的三级模式是对数据的三个级别抽象,它把数据的具体物理实现留给物理模式,使得全局设计者不必关心数据库的具体实现与物理背景;通过两级映射建立了模式间的联系与转换,使得概念模式与外模式虽然并不物理存在,但也能通过映射获得实体。同时,两级映射也保证了数据库系统中数据的独立性。

两级模式的映射:

概念模式到内模式的映射:该映射给出概念模式中数据的全局逻辑结构到数据的物理存储结构间的对应关系

外模式到概念模式的映射:该映射给出了外模式与概念模式之间的对应关系

拓展外部结构

从数据库最终用户角度看,数据库系统的结构分为集中式(单用户结构、主从式结构)、分布式(客户机/服务器结构)和多层结构,这是数据库系统外部的体系结构。

(1)单用户应用结构:是运行在个人计算机上的结构模式,常称为桌面(Desktop)DBMS。属于单用户DBMS的主要产品有:Microsoft Access、Paradox、Fox系列。单用户的DBMS的功能在数据的一致性维护、完整性检查及安全性管理上是不完善的。桌面数据库管理系统中比较好的有Access、Paradox等,它基本实现了DBMS应该具有的功能。

(2)主机/终端结构:是以大型主机为中心(Mainframe.Centric)的结构模式,也称为分时共享(Time—Sharing)模式,它是面向终端的多用户计算机系统(主从式结构)。该结构以一台主机为核心,将 *** 作系统、应用程序、DBMS、数据库等数据和资源均放在该主机上,所有的应用处理均由主机承担,每个与主机相连接的终端都是作为主机的一种I/O设备。由于是集中式管理,主机的任何错误都有可能导致整个系统的瘫痪。因此,这种结构对系统的主机的性能要求比较高,维护费用也较高。

(3)客户机/服务器(Client—Server,C/S)结构:是随着计算机网络的广泛使用而出现的结构模式。该结构是将一个数据库分解为客户机(称为前端,Front—End)、应用程序和服务器(称为后端,Back-End)三部分,通过网络连接应用程序和服务器。由于C/S结构的本质是通过对服务功能的分布实现分工服务,因而又称为分布式服务模式。人们将C/S称为二层结构的数据库应用模式。

(4)多层数据库应用结构:将应用程序放在服务器端执行,客户机端安装统一的前端运行环境——浏览器,在客户机和服务器之间增加一层用于转换的服务器,形成三层结构的数据库应用模式,这就是Intemet/Intranet环境下数据库的应用模式。三层结构是由二层(C/S)结构扩展而来的,这种三层结构也称为浏览器/Web 服务器/数据库服务器(B/W/S)结构。

;

以上就是关于移动云的底层架构是基于什么全部的内容,包括:移动云的底层架构是基于什么、数据库的基本结构、数据库索引的底层实现是什么数据结构等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9475834.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存