一:表中应该避免可为空的列;二:表不应该有重复的值或者列;三:表中记录应该有一个唯一的标识符在数据库表设计的时候,数据库管理员应该养成一个好习惯,用一个ID号来唯一的标识行记录,而不要通过名字、编号等字段来对纪录进行区分
每个表都应该有一个ID列,任何两个记录都不可以共享同一个ID值
另外,这个ID值最好有数据库来进行自动管理,而不要把这个任务给前台应用程序
否则的话,很容易产生ID值不统一的情况
另外,在数据库设计的时候,最好还能够加入行号
如在销售订单管理中,ID号是用户不能够维护的
但是,行号用户就可以维护
如在销售订单的行中,用户可以通过调整行号的大小来对订单行进行排序
通常情况下,ID列是以1为单位递进的
但是,行号就要以10为单位累进
如此,正常情况下,行号就以10、20、30依次扩展下去
若此时用户需要把行号为30的纪录调到第一行显示
此时,用户在不能够更改ID列的情况下,可以更改行号来实现
如可以把行号改为1,在排序时就可以按行号来进行排序
如此的话,原来行号为30的纪录现在行号变为了1,就可以在第一行中显示
这是在实际应用程序设计中对ID列的一个有效补充
这个内容在教科书上是没有的
需要在实际应用程序设计中,才会掌握到这个技巧
四:数据库对象要有统一的前缀名一个比较复杂的应用系统,其对应的数据库表往往以千计
若让数据库管理员看到对象名就了解这个数据库对象所起的作用,恐怕会比较困难
而且在数据库对象引用的时候,数据库管理员也会为不能迅速找到所需要的数据库对象而头疼
为此,笔者建立,在开发数据库之前,最好能够花一定的时间,去制定一个数据库对象的前缀命名规范
如笔者在数据库设计时,喜欢跟前台应用程序协商,确定合理的命名规范
笔者最常用的是根据前台应用程序的模块来定义后台数据库对象前缀名
如跟物料管理模块相关的表可以用M为前缀;而以订单管理相关的,则可以利用C作为前缀
具体采用什么前缀可以以用户的爱好而定义
但是,需要注意的是,这个命名规范应该在数据库管理员与前台应用程序开发者之间达成共识,并且严格按照这个命名规范来定义对象名
其次,表、视图、函数等最好也有统一的前缀
如视图可以用V为前缀,而函数则可以利用F为前缀
如此数据库管理员无论是在日常管理还是对象引用的时候,都能够在最短的时间内找到自己所需要的对象
五:尽量只存储单一实体类型的数据这里将的实体类型跟数据类型不是一回事,要注意区分
这里讲的实体类型是指所需要描述对象的本身
笔者举一个例子,估计大家就可以明白其中的内容了
如现在有一个图书馆里系统,有图书基本信息、作者信息两个实体对象
若用户要把这两个实体对象信息放在同一张表中也是可以的
如可以把表设计成图书名字、图书作者等等
可是如此设计的话,会给后续的维护带来不少的麻烦
如当后续有图书出版时,则需要为每次出版的图书增加作者信息,这无疑会增加额外的存储空间,也会增加记录的长度
而且若作者的情况有所改变,如住址改变了以后,则还需要去更改每本书的记录
若这个作者的图书从数据库中全部删除之后,这个作者的信息也就荡然无存了
很明显,这不符合数据库设计规范化的需求
遇到这种情况时,笔者建议可以把上面这张表分解成三种独立的表,分别为图书基本信息表、作者基本信息表、图书与作者对应表等等
如此设计以后,以上遇到的所有问题就都引刃而解了
通常情况下,可以从两个方面来判断数据库设计的是否规范:
1)一是看看是否拥有大量的窄表
窄表往往对于OLTP比较合适,符合范式设计原则
2)宽表的数量是否足够的少。
所谓的宽表就是字段比较多的表,包含的维度层次比较多,造成冗余也比较多,毁范式设计,但是利于取数统计
若符合这两个条件,我们可以说数据库设计的比较好
当然这是两个泛泛而谈的指标。为了达到数据库设计规范化的要求,一般来说,需要符合以下五个要求。
要求一:表中应该避免可为空的列。
虽然表中允许空列,但是,空字段是一种比较特殊的数据类型。数据库在处理的时候,需要进行特殊的处理。如此的话,就会增加数据库处理记录的复杂性。当表中有比较多的空字段时,在同等条件下,数据库处理的性能会降低许多。
所以,虽然在数据库表设计的时候,允许表中具有空字段,但是,我们应该尽量避免。若确实需要的话,我们可以通过一些折中的方式,来处理这些空字段,让其对数据库性能的影响降低到最少。
要求二:表不应该有重复的值或者列。
如现在有一个进销存管理系统,这个系统中有一张产品基本信息表中。这个产品开发有时候可以是一个人完成,而有时候又需要多个人合作才能够完成。所以,在产品基本信息表产品开发者这个字段中,有时候可能需要填入多个开发者的名字。
如进销存管理中,还需要对客户的联系人进行管理。有时候,企业可能只知道客户一个采购员的姓名。但是在必要的情况下,企业需要对客户的采购代表、仓库人员、财务人员共同进行管理。因为在订单上,可能需要填入采购代表的名字;可是在出货单上,则需要填入仓库管理人员的名字等等。
为了解决这个问题,有多种实现方式。但是,若设计不合理的话在,则会导致重复的值或者列。如我们也可以这么设计,把客户信息、联系人都放入同一张表中。为了解决多个联系人的问题,可以设置第一联系人、第一联系人电话、第二联系人、第二联系人电话等等。若还有第三联系人、第四联系人等等,则往往还需要加入更多的字段。
所以,我们在数据库设计的时候要尽量避免这种重复的值或者列的产生。笔者建议,若数据库管理员遇到这种情况,可以改变一下策略。如把客户联系人另外设置一张表。然后通过客户ID把供应商信息表跟客户联系人信息表连接起来。也就是说,尽量将重复的值放置到一张独立的表中进行管理。然后通过视图或者其他手段把这些独立的表联系起来。
要求三:表中记录应该有一个唯一的标识符。
在数据库表设计的时候,数据库管理员应该养成一个好习惯,用一个ID号来唯一的标识行记录,而不要通过名字、编号等字段来对纪录进行区分。每个表都应该有一个ID列,任何两个记录都不可以共享同一个ID值。另外,这个ID值最好有数据库来进行自动管理,而不要把这个任务给前台应用程序。否则的话,很容易产生ID值不统一的情况。
另外,在数据库设计的时候,最好还能够加入行号。如在销售订单管理中,ID号是用户不能够维护的。但是,行号用户就可以维护。如在销售订单的行中,用户可以通过调整行号的大小来对订单行进行排序。通常情况下,ID列是以1为单位递进的。但是,行号就要以10为单位累进。如此,正常情况下,行号就以10、20、30依次扩展下去。若此时用户需要把行号为30的纪录调到第一行显示。此时,用户在不能够更改ID列的情况下,可以更改行号来实现。如可以把行号改为1,在排序时就可以按行号来进行排序。如此的话,原来行号为30的纪录现在行号变为了1,就可以在第一行中显示。这是在实际应用程序设计中对ID列的一个有效补充。这个内容在教科书上是没有的。需要在实际应用程序设计中,才会掌握到这个技巧。
要求四:数据库对象要有统一的前缀名。
一个比较复杂的应用系统,其对应的数据库表往往以千计。若让数据库管理员看到对象名就了解这个数据库对象所起的作用,恐怕会比较困难。而且在数据库对象引用的时候,数据库管理员也会为不能迅速找到所需要的数据库对象而头疼。
其次,表、视图、函数等最好也有统一的前缀。如视图可以用V为前缀,而函数则可以利用F为前缀。如此数据库管理员无论是在日常管理还是对象引用的时候,都能够在最短的时间内找到自己所需要的对象。
要求五:尽量只存储单一实体类型的数据。
这里将的实体类型跟数据类型不是一回事,要注意区分。这里讲的实体类型是指所需要描述对象的本身。笔者举一个例子,估计大家就可以明白其中的内容了。如现在有一个图书馆里系统,有图书基本信息、作者信息两个实体对象。若用户要把这两个实体对象信息放在同一张表中也是可以的。如可以把表设计成图书名字、图书作者等等。可是如此设计的话,会给后续的维护带来不少的麻烦。
如当后续有图书出版时,则需要为每次出版的图书增加作者信息,这无疑会增加额外的存储空间,也会增加记录的长度。而且若作者的情况有所改变,如住址改变了以后,则还需要去更改每本书的记录。同时,若这个作者的图书从数据库中全部删除之后,这个作者的信息也就荡然无存了。很明显,这不符合数据库设计规范化的需求。
遇到这种情况时,笔者建议可以把上面这张表分解成三种独立的表,分别为图书基本信息表、作者基本信息表、图书与作者对应表等等。如此设计以后,以上遇到的所有问题就都引刃而解了。
如何优化 *** 作大数据量数据库
下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。
1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(pound index)。
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁 *** 作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:
●索引中不包括一个或几个待排序的列;
●group by或order by子句中列的次序与索引的次序不一样;
●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序 *** 作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的 ,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
4.避免相关子查询
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序 *** 作,而且在其他方面还能简化优化器的工作。例如:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
AND custpostcode>“98000”
ORDER BY custname
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT custname,rcvblesbalance,……other columns
FROM cust,rcvbles
WHERE custcustomer_id = rcvlbescustomer_id
AND rcvbllsbalance>0
ORDER BY custname
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。
7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的 *** 作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。
实例分析
下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:
1.part表
零件号零件描述其他列
(part_num)(part_desc)(other column)
102,032Seageat 30G disk……
500,049Novel 10M neork card……
……
2.vendor表
厂商号厂商名其他列
(vendor _num)(vendor_name) (other column)
910,257Seageat Corp……
523,045IBM Corp……
……
3.parven表
零件号厂商号零件数量
(part_num)(vendor_num)(part_amount)
102,032910,2573,450,000
234,423321,0014,000,000
……
下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:
SELECT part_desc,vendor_name,part_amount
FROM part,vendor,parven
WHERE partpart_num=parvenpart_num
AND parvenvendor_num = vendorvendor_num
ORDER BY partpart_num
如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:
表行尺寸行数量每页行数量数据页数量
(table)(row size)(Row count)(Rows/Pages)(Data Pages)
part15010,00025400
Vendor1501,000 2540
Parven13 15,000300 50
索引键尺寸每页键数量页面数量
(Indexes)(Key Size)(Keys/Page)(Leaf Pages)
part450020
Vendor45002
Parven825060
看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取15万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为504万次。
hibernate如何优化大数据量 *** 作?建议你直接用Jdbc好了,用batch,这样是最快的。
如何实现大数据量数据库的历史数据归档打开数据库
conOpen();
读取数据
OdbcDataReader reader = cmdExecuteReader();
把数据加载到临时表
dtLoad(reader);
在使用完毕之后,一定要关闭,要不然会出问题
readerClose();
这个问题是这样的:
首先你要明确你的插入是正常业务需求么?如果是,那么只能接受这样的数据插入量。
其次你说数据库存不下了 那么你可以让你的数据库上限变大 这个你可以在数据库里面设置的 里面有个数据库文件属性 maxsize
最后有个方法可以使用,如果你的历史数据不会对目前业务造成很大影响 可以考虑归档处理 定时将不用的数据移入历史表 或者另外一个数据库。
注意平时对数据库的维护 定期整理索引碎片
时间维度分区表,然后定情按照规则将属于历史的分区数据迁移到,历史库上,写个存储自动维护分区表。
如何用java jdbc 向数据库表插入大数据量一次性插入大量数据,只能使用循环,
如:游标,while 循环语句
下面介绍While 循环插入数据,
SQL 代码如下:
IF OBJECT_ID('dboNums') IS NOT NULL
DROP TABLE dboNums;
GO
CREATE TABLE dboNums(n INT NOT NULL PRIMARY KEY);
DECLARE @max AS INT, @rc AS INT;
SET @max = 5000000;
SET @rc = 1;
INSERT INTO Nums VALUES(1);
WHILE @rc 2 <= @max
BEGIN
INSERT INTO dboNums SELECT n + @rc FROM dboNums;
SET @rc = @rc 2;
END
INSERT INTO dboNums SELECT n + @rc FROM dboNums WHERE n + @rc <= @max;
--以上函数取自Inside SQL Server 2005: T-SQL Query一书。
INSERT dboSample SELECT n, RAND(CAST(NEWID() AS BINARY(16))) FROM Nums
php 怎么解决 大数据量 插入数据库ini_set('max_execution_time','0');
$pdo = new PDO("mysql:host=localhost;dbname=test","root","123456");
$sql = "insert into test(name,age,state,created_time) values";
for($i=0; $i<100000; $i++){
$sql ="('zhangsan',21,1,'2015-09-17')";
}
$sql = substr($sql,0,strlen($sql)-1);
var_dump($sql);
if($pdo -> exec($sql)){
echo "插入成功!";
echo $pdo -> lastinsertid();
}
试试吧。10万条1分钟多,我觉得还行
请教如何通过WCF传输大数据量数据就是直接把DataSet 类型作为参数直接传递给服务端
WCF默认支持这么做,直接传Datatable不行。
你看一下 “服务引用设置”中你选的 类型是什么,我选的是SystemArray
字典 类型是默认第一项 SystemCollectionsGenericDictionary
又是一个把自己架在火上烤的需求啊,
如果不考虑传输因素,可以调整wcf配置,提升传递的容量,如果是对象传递可能还要调整对象层次的深度
以上就是关于开发一个完整的数据库系统具体的流程是什么全部的内容,包括:开发一个完整的数据库系统具体的流程是什么、如何合理和有效的进行数据库设计、如何优化 *** 作大数据量数据库等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)