随着时间和业务的发展,数据库中的数据量增长是不可控的,库和表中的数据会越来越大,随之带来的是更高的 磁盘 、 IO 、 系统开销 ,甚至 性能 上的瓶颈,而单台服务器的 资源终究是有限 的。
因此在面对业务扩张过程中,应用程序对数据库系统的 健壮性 , 安全性 , 扩展性 提出了更高的要求。
以下,我从数据库架构、选型与落地来让大家入门。
数据库会面临什么样的挑战呢?
业务刚开始我们只用单机数据库就够了,但随着业务增长,数据规模和用户规模上升,这个时候数据库会面临IO瓶颈、存储瓶颈、可用性、安全性问题。
为了解决上述的各种问题,数据库衍生了出不同的架构来解决不同的场景需求。
将数据库的写 *** 作和读 *** 作分离,主库接收写请求,使用多个从库副本负责读请求,从库和主库同步更新数据保持数据一致性,从库可以水平扩展,用于面对读请求的增加。
这个模式也就是常说的读写分离,针对的是小规模数据,而且存在大量读 *** 作的场景。
因为主从的数据是相同的,一旦主库宕机的时候,从库可以 切换为主库提供写入 ,所以这个架构也可以提高数据库系统的 安全性 和 可用性 ;
优点:
缺点:
在数据库遇到 IO瓶颈 过程中,如果IO集中在某一块的业务中,这个时候可以考虑的就是垂直分库,将热点业务拆分出去,避免由 热点业务 的 密集IO请求 影响了其他正常业务,所以垂直分库也叫 业务分库 。
优点:
缺点:
在数据库遇到存储瓶颈的时候,由于数据量过大造成索引性能下降。
这个时候可以考虑将数据做水平拆分,针对数据量巨大的单张表,按照某种规则,切分到多张表里面去。
但是这些表还是在同一个库中,所以库级别的数据库 *** 作还是有IO瓶颈(单个服务器的IO有上限)。
所以水平分表主要还是针对 数据量较大 ,整体业务 请求量较低 的场景。
优点:
缺点:
四、分库分表
在数据库遇到存储瓶颈和IO瓶颈的时候,数据量过大造成索引性能下降,加上同一时间需要处理大规模的业务请求,这个时候单库的IO上限会限制处理效率。
所以需要将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。
分库分表能够有效地缓解单机和单库的 性能瓶颈和压力 ,突破IO、连接数、硬件资源等的瓶颈。
优点:
缺点:
注:分库还是分表核心关键是有没有IO瓶颈 。
分片方式都有什么呢?
RANGE(范围分片)
将业务表中的某个 关键字段排序 后,按照顺序从0到10000一个表,10001到20000一个表。最常见的就是 按照时间切分 (月表、年表)。
比如将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据被查询的概率变小,银行的交易记录多数是采用这种方式。
优点:
缺点:
HASH(哈希分片)
将订单作为主表,然后将其相关的业务表作为附表,取用户id然后 hash取模 ,分配到不同的数据表或者数据库上。
优点:
缺点:
讲到这里,我们已经知道数据库有哪些架构,解决的是哪些问题,因此, 我们在日常设计中需要根据数据的特点,数据的倾向性,数据的安全性等来选择不同的架构 。
那么,我们应该如何选择数据库架构呢?
虽然把上面的架构全部组合在一起可以形成一个强大的高可用,高负载的数据库系统,但是架构选择合适才是最重要的。
混合架构虽然能够解决所有的场景的问题,但是也会面临更多的挑战,你以为的完美架构,背后其实有着更多的坑。
1、对事务支持
分库分表后(无论是垂直还是水平拆分),就成了分布式事务了,如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价(XA事务);如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担(TCC、SAGA)。
2、多库结果集合并 (group by,order by)
由于数据分布于不同的数据库中,无法直接对其做分页、分组、排序等 *** 作,一般应对这种多库结果集合并的查询业务都需要采用数据清洗、同步等其他手段处理(TIDB、KUDU等)。
3、数据延迟
主从架构下的多副本机制和水平分库后的聚合库都会存在主数据和副本数据之间的延迟问题。
4、跨库join
分库分表后表之间的关联 *** 作将受到限制,我们无法join位于不同分库的表(垂直),也无法join分表粒度不同的表(水平), 结果原本一次查询就能够完成的业务,可能需要多次查询才能完成。
5、分片扩容
水平分片之后,一旦需要做扩容时。需要将对应的数据做一次迁移,成本代价都极高的。
6、ID生成
分库分表后由于数据库独立,原有的基于数据库自增ID将无法再使用,这个时候需要采用其他外部的ID生成方案。
一、应用层依赖类(JDBC)
这类分库分表中间件的特点就是和应用强耦合,需要应用显示依赖相应的jar包(以Java为例),比如知名的TDDL、当当开源的 sharding-jdbc 、蘑菇街的TSharding等。
此类中间件的基本思路就是重新实现JDBC的API,通过重新实现 DataSource 、 PrepareStatement 等 *** 作数据库的接口,让应用层在 基本 不改变业务代码的情况下透明地实现分库分表的能力。
中间件给上层应用提供熟悉的JDBC API,内部通过 sql解析 、 sql重写 、 sql路由 等一系列的准备工作获取真正可执行的sql,然后底层再按照传统的方法(比如数据库连接池)获取物理连接来执行sql,最后把数据 结果合并 处理成ResultSet返回给应用层。
优点
缺点
二、中间层代理类(Proxy)
这类分库分表中间件的核心原理是在应用和数据库的连接之间搭起一个 代理层 ,上层应用以 标准的MySQL协议 来连接代理层,然后代理层负责 转发请求 到底层的MySQL物理实例,这种方式对应用只有一个要求,就是只要用MySQL协议来通信即可。
所以用MySQL Navicat这种纯的客户端都可以直接连接你的分布式数据库,自然也天然 支持所有的编程语言 。
在技术实现上除了和应用层依赖类中间件基本相似外,代理类的分库分表产品必须实现标准的MySQL协议,某种意义上讲数据库代理层转发的就是MySQL协议请求,就像Nginx转发的是>
比对的数据库不同,PaperFree论文查重软件通过海量数据库对提交论文进行对比分析,准确地查到论文中的潜在抄袭和不当引用,实现了对学术不端行为的检测服务。
数据库范围
学术期刊,学位论文,会议论文,互联网,英文数据库(涵盖期刊,硕博,会议的英文数据)。
检测范围
涵盖所有中英文类别,包括哲学、经济学、管理学、法学、社会科学、教育学、文学、艺术学、历史学、理学、工学、农学、医学、政治学、军事学等。
LexisNexis是世界著名的数据库,全球许多著名法学院、法律事务所、高科技公司的法务部门都在使用该数据库。该数据库连结至40亿个文件、11,439个数据库以及36,000个来源,资料每日更新。
法律研究内容:美国联邦与州政府的案例(收录约300年之全文案例);美最高法院案例(1790年至今);美最高法院上诉案例;美地方法院及州法院的案例及判决书;所有联邦律法及规则;50州法规;法律评论(论文来自450多种评论杂志)。
欧洲联邦律法;专利数据库(收录1980年以来的欧、美、日之专利全文)、英联邦国家法律法规和案例、WTO之相关案例和条文、其它律法主题等。
新闻报纸、杂志、学术期刊:LexisNexis新闻服务的资料来自世界各地九千多个数据源。资料种类包括主要的报纸,国际性的杂志、学术期刊等服务。学术期刊包括全套的ABI Inform全文资料。
公司档案,世界范围内9,100万家上市及非上市公司的详细档案,内容涵盖公司简介、年度财务数据、董事会及高管名单、股票图表、信用评级、关联公司目录、所涉诉讼和新闻、知识产权信息。
全部信息来自:
《标准普尔公司报告》(Standard &Poor’s Corporate Descriptions)、《胡佛公司报告》(Hoovers Company Reports)、《公司披露报告》(Disclosure Reports)、《跨国公司报告》(International Company Reports)等权威报告。
我们使用Elasticsearch存储的文档数量接近50亿(算上1份复制,接近
100亿文档),总共10个数据节点和2个元数据节点(48GB内存,8核心CPU,ES使用内存达到70%),每天的文档增量大概是3000W条(速度
持续增加中)。目前来看,单个文档的查询效率基本处于实时状态;对于1到2周的数据的聚合统计 *** 作也可以在10秒之内返回结果。
但是,还有提升的空间:
1 对于查询单条数据的应用场景来说,我们可以使用ES的路由机制,将同一索引内的具有相同特征(比如具有相同的userid)的文档全部存储于一个节点上,这样我们之后的查询都可以直接定位到这个节点上,而不用将查询广播道所有的节点上;
2 随着数据节点的增加,适当增加分片数量,提升系统的分布水平,也可以通过分而治之的方式优化查询性能;
个人以为Elasticsearch作为内部存储来说还是不错的,效率也基本能够满足,在某些方面替代传统DB也是可以的,前提是你的业务不对 *** 作的事
性务有特殊要求;而权限管理也不用那么细,因为ES的权限这块还不完善。由于我们对ES的应用场景仅仅是在于对某段时间内的数据聚合 *** 作,没有大量的单文
档请求(比如通过userid来找到一个用户的文档,类似于NoSQL的应用场景),所以能否替代NoSQL还需要各位自己的测试。如果让我选择的话,我
会尝试使用ES来替代传统的NoSQL,因为它的横向扩展机制太方便了。
数据库有上亿条商品数据
需要处理大量按商品名称的模糊查询(假设商品名称的分词已经实现了,也就是用多个关键字来查询)
我最本来是这样设想的:
建立一个商品名称索引表:ID,Name,ProductID 三个字段
ID自增
Name(分词程序对商品名称进行分词后,保存下来的一个词),
ProductID,商品名称包含该词的商品ID(varchar(max)字段,任何包含该词的商品ID都存在这个字段
问题就是到了这里,比如一个词:黑色,可能包含黑色这个词的商品名称有N多个,就算我知道了这些商品ID处理起来也很麻烦了。
还有在网上看到很多资料,说这么大数据量要进行数据分区,但如果搜索名称字段的话,我必须要进行全表扫描才能得到想要的数据啊?
请大家帮我分析下,我该怎么处理啊?
以上就是关于数据库架构选型与落地,看这篇就够了全部的内容,包括:数据库架构选型与落地,看这篇就够了、100亿个无序有重复的64位整数,如何找到其中位数、paperok免费版与旗舰版差别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)