松嫩平原地下水资源及其环境问题调查空间数据库包括野外数据采集系统、数据录入系统、数据库信息应用系统、数据库检查验收系统和综合成果管理系统五个组成部分。系统具备了数据录入、编辑、管理、浏览、查询、质量控制等功能,同时可以进行简单的数据处理 *** 作。
属性数据库的录入是按照《水文地质环境地质调查信息系统使用手册》中的数据格式及要求在数据录入系统中完成的。
空间数据库的建设是按照《地下水资源调查评价数据库标准》的具体要求进行的,调查资料和收集资料的录入是主要由黑龙江和吉林两省地质调查院完成,之后实施单位进行汇总、检查。
一、工作流程
包括资料准备(图形图像资料、文字资料、专业数据资料的收集、图件预处理、图件的分层及清绘处理)、数据采集、属性表编制、图形数字化、属性库的录入、图形属性挂接、图形编辑修改、图形误差校正、图形投影转换、建立图库、质量检查、成果汇交、文档管理等工作(图14—1)。
二、建库方法
(一)资料准备
资料准备工作包括1∶25万地理底图的转化及修编;资料的收集、筛选、分类、整理;熟悉数据库信息系统和数据库标准等。首先对工作区内以往的水文地质环境地质资料进行收集、整理、筛选,进行资料的可靠性、准确性及实用性分析,把内容完整、数据可靠、内容可用的资料分类挑选出来,作为准备入库的资料。由于收集的原始资料时间跨度大,格式、资料内容与数据库要求的格式不一致,在录入之前必须对收集资料内容进行整理,有的还需要进行单位换算,提炼出所需资料。对实测资料有缺少项目等情况,及时与调查人员联系,进行了必要补充。将整理好的收集资料及实测资料,按照技术要求进行统一编号,为了确保图元编码的唯一性,统一编号由17位数字组成,即:经度8位+纬度7位+识别码2位。
(二)属性数据的录入与检查
将整理、筛选出来的资料,分门别类地分配给不同的工作人员进行计算机录入。由于所录入资料的专业性较强、数据量大、内容参差不齐,录入时需要随时进行分析,因此入库资料全部由专业人员完成,以保证入库数据的质量和准确性。地下水资源调查的数据表是一对多个主从表结构关系,因此在数据录入过程中,必须先输入主表数据,再录入从表数据。特别是野外水文地质点基础表是所有相关数据关联的基础,在输入新的调查点资料之前,必须先输入该表中的数据。为了保证录入数据的质量,采取的保障措施是每录入完一份资料马上与原始资料对照检查,避免时间过长容易忘记。
图14—1 空间数据库建设工作流程图
1水文地质钻孔综合表的录入
按照数据库提供的录入表内容,主表水文地质钻孔综合表包括地层描述、井径变化、井管结构、填砾止水、测井曲线和含水层划分6个分表。
由于以往资料各家使用的钻孔综合成果表的内容表达方式不尽相同,与数据库中给定的表格内容不是一一对应,特别是松嫩平原的含水层多,白垩系含水层划分不明确,所以这部分资料内容录入整理的工作量很大。在收集到的钻孔资料中给出的位置坐标全部是大地坐标,首先要把大地坐标转换成经纬度,然后进行统一编号,再进行录入。由于钻孔综合成果表中内容多,数据库表中所需的内容要到成果表中各项目中查找,查找起来需要很长时间,并且有一些项目需要进行计算,如填砾厚度,需要用孔径和井径进行计算;钻孔变径描述、钻孔井管结构、水文地质钻孔填砾止水结构、地质钻孔含水段厚度等是在柱状图中按比例尺量算的,然后按比例尺换成深度。含水层厚度的确定,在钻孔综合成果表中给出的含水层厚度是整个钻孔揭穿的含水层总厚度,但数据库需要分段填写,这部分数据根据岩性描述确定出含水段的位置,计算含水层厚度,分段含水层的厚度之和与成果表中的含水层总厚度保持一致。在录入过程中,钻孔资料按原始数据100%录入,不遗漏每一项数据(图14—2、图14—3)。
图14—2 数据库中钻孔资料关联表
图14—3 数据库中的钻孔资料
2抽水试验成果表的录入
收集的抽水试验资料一般都在钻孔综合成果表中,没有原始的抽水试验记录,在钻孔综合成果表中只有不同落程抽水试验总的观测时间、稳定时间、水位恢复时间、水位降深、涌水量及抽水试验成果。为了避免在录入完成综合成果表后,漏录抽水试验成果表,在录入过程中,对钻孔资料首先录入抽水试验成果表,然后再录入综合成果表。对于本次获得的实测资料,由于观测记录中涌水量单位为m3/d,数据库中要求为L/s,必须先进行换算,然后再进行录入,工作比较繁琐,在转换过程中容易出现数据错误,所以在录入前先进行涌水量单位换算,然后再进行录入和检查。本次施工的钻孔抽水试验则依据原始抽水试验记录录入。
3水、土样品采集记录表的录入
(1)野外水样采集记录表的录入
野外采样是按年度工作区分三年完成的,录入工作也是按年度进行。地下水水质分析样包括水质全分析、简分析、微量元素分析、同位素分析样和地表水样。野外水样采集记录表与水质分析综合成果数据表及同位素测试综合成果数据表是一套相关联表(图14—4),首先录入测试数据表,然后录入野外水样采集记录表,再录入水质分析综合成果表和同位素测试数据。
(2)野外土壤样品采集记录表的录入
该表包括土壤易溶盐分析和土壤污染分析成果表,在录入过程中先录入野外土壤样品采集记录表中相关内容,然后录入土壤易溶盐分析调查表中的各项内容。
4野外调查卡片的录入
野外调查卡片随着野外工作的开展按年度分期录入,野外工作分三年进行,录入过程也分三年进行。
(1)机民井调查记录表的录入
在野外调查过程中,不同地区分潜水和承压水分别进行调查。在录入中有时同一个点既调查了深层水、又调查了浅层水,同一个点,两个不同的内容,这时就要特别注意,不能将第一个点替换掉,只能用统一编号来区分。调查点平面位置示意图和地形地貌、含水层剖面图采用灰度扫描,扫描精度为300 dpi,扫描后部分进行矢量化,生成JPEG图像插入录入系统中,部分直接生成JPEG图像插入录入系统中(图14—5)。
图14—4 数据库中水样采集记录与水质分析综合成果数据表
图14—5 数据库中机民井调查表
(2)土地盐渍化野外调查表的录入
在录入该表格时,表中有“年内最高水位”和“年内最低水位”,由于在野外仅靠一次观测没办法查明这两项内容,所以该项内容录入不全或不够准确。表中的样品采集情况一栏,字段数少、取样较多,有的时候各取样深度不能全部录入。
表中调查点平面示意图,采用扫描精度为300 dpi,进行灰度扫描,扫描后进行矢量化,生成JPEG图像插入录入系统中(图14—6)。
(3)地表水点综合调查数据表的录入
地表水体调查点包括湖泊、河流等调查点,按照野外提供的表格直接进行录入,地貌、地质剖面素描图及调查点平原位置示意图采用扫描精度为300 dpi,灰度扫描,扫描后部分进行矢量化,生成JPEG图像插入录入系统中,部分直接生成JPEG图像插入录入系统中(图14—7)。
(4)地下水污染综合调查表的录入
该项工作只在黑龙江省做了少量调查,已全部录入,调查点平面位置示意图,采用精度为300 dpi,灰度扫描,将扫描图直接生成JPEG图像插入录入系统中。
(5)泉点野外调查记录表、水源地综合调查表、野外水文地质点调查表、野外水文地质调查路线表、土地荒漠化野外调查表的录入。
这些表的数据整理及录入均按照录入表式填写录入,所涉及的剖面或平面示意图采用精度为300 dpi,灰度扫描,将扫描图直接生成JPEG图像插入录入系统中。
图14—6 数据库中土地盐渍化野外调查表
图14—7 数据库中地表水综合调查表
5地下水观测井基本情况表的录入
这部分内容按照数据库中提供的表格逐项目录入,主要录入了地下水位人工监测数据记录表、地下水位监测数据成果汇总表、地下水水温监测原始记录表,地下水位监测资料从2003年8月至2005年8月,每5天监测一次,共监测2年。
6地下水位统测野外记录表的录入
该表录入的资料为2003年、2004年、2005年不同时期的统测资料,该表在录入过程中,由于技术要求下达较晚,野外统测时,定位点坐标精度差,资料取得后,录入人员将数据全部录入数据库中,待技术要求下达后,对统测点又重新进行野外定位,使得录入资料全部重新录入。
7地下水位统测汇总表的录入
该表由地下水位统测野外记录表自动生成,共体现了2003~2005年3年4次统测资料,2003年丰水期1次、2004年枯、丰水期2次统测、2005年枯水期1次统测。在3年4次的统测中,有一部分统测井由于某种原因,不能在同一个井连续进行,只能换成其他点进行统测。有一些点坐标没有改变,只是水位及标高改变,这一类点,在录入过程中在井口标高和井深中都已经填写上了新换点(图14—8)。
8试坑渗水试验观测记录表的录入
该表录入了2003年和2004年资料,该项工作做得不多,资料较少,但作为第一手资料,比较宝贵。内容按数据库中的表格要求录入。试坑平面位置示意图采用扫描精度为300 dpi,灰度扫描,扫描后进行矢量化,生成JPEG图像插入录入系统中(图14—9)。
9汇总与数据备份
由于数据库录入工作量大、内容多,必须由多人分工完成,因此要通过数据汇总将多台机器上的数据库中的数据汇总到一个数据库上。分头录入的资料一般每周汇总一次,汇总时由汇总人员对录入的资料进行抽查,一般抽查率在20%~30%。为了避免数据丢失,在进行数据汇总前先将数据做一备份,以防万一。
(三)图形数据库的建立
空间图形数据库的建立分为7个阶段进行:
第一阶段:完成属性库的录入工作。属性数据录入的完成是《地下水资源调查应用系统》中自动生成各类调查点图层的前提。
图14—8 数据库中地下水位统测数据汇总表
图14—9 数据库中试坑渗水试验综合成果汇总表
第二阶段:编绘1∶25万地理底图。根据技术要求,进行修编,涵盖了主要交通干线、河流、居民地、省、市、县界线、松嫩平原界线等。图面清晰明了,满足绘制成果图件的要求。
第三阶段:成果图件矢量化。每张成果图件均由编图人员在喷绘的1∶50万地理底图上绘制,然后采用300 dpi扫描,形成栅格化文件,再由建库人员利用Map GIS将图像配准到已矢量化、修编好的地理底图上,所有经纬网交叉点都作为控制点采集对象,保证了图像配准的精度,最后完成数字化制图。
第四阶段:检查、修改成果图件,熟悉《地下水资源调查应用系统》和《地下水资源调查评价数据库标准》对地下水资源数据库图层的划分及其属性结构,做好图形入库的准备工作。
第五阶段:从已有的成果图件中提出数据库中所需要的图层,并赋予属性。每个图层文件都要在Map GIS中设置好投影参数,并且与成果图件投影参数保持一致,均为兰伯特等角圆锥平面直角坐标系。
第六阶段:将属性库文件和成果图件中提出的图层文件导入《地下水资源调查应用系统》中。具体 *** 作如下:①在该系统中增加一个新工作区,连接属性数据库文件,设置投影参数为兰伯特等角圆锥1∶25万平面直角坐标系;②导入已修编好的地理底图;③根据系统中空间数据库部分的目录树所列图层和属性库中各类调查点的数据,依次生成点图层,并且由系统自动挂接属性文件;④将已编辑好的线、区图层导入本系统;⑤更新地图参数,系统会将各类图层重新投影为新建工作区时所设的投影参数,保证了各类图层在空间位置上相对一致性(图14—10~图14—13)。
图14—10 数据库中的地貌分区图层
图14—11 数据库中潜水含水岩组岩性分区图层
图14—12 数据库中潜水富水性分区图层
图14—13 数据库中2004年丰水期水位埋深等值线图
可以使用java中的模块化编程思想,分成两个模块,一个模块用来收集数据,将收集到的数据存储在一个数组中,另一个模块用来处理每20条数据中选择一条进行入库。
1收集数据:// 声明一个数组,用于存储收集到的数据String[] dataArray = new String[20];// 循环收集数据,每次收集20条for(int i=0; i<20; i++){ dataArray[i] = getDataFromSource();}
2处理数据:// 随机生成一个数字,作为要入库的数据的索引int index = (int)(Mathrandom() 20);// 取出要入库的数据String data = dataArray[index];// 将数据入库insertDataIntoDB(data);
一、三维模型的真实性认定困难。三维模型是一种电子文件,其载体与信息是可以分离的,存储于计算机系统的三维模型因为软硬件升级、系统迁移等要求,可能出现信息的迁移。随着存储介质与方式的变更,载体与信息的统一性难以得到保证。
二、三维模型数据格式种类繁多,且存储格式没有统一的规范,通用性较弱,可能面临无法读取的风险。就三维CAD技术来说,异构CAD模型的数据交换一直是棘手的问题,法国、美国、德国分别提出了SET格式、VDFS格式、IGES格式,从而形成一组产品模型数据标准:STEP标准,用于几何图形的数据交换。对于地理三维数据来说,采用地理特征数据库技术,可以实现对三维地理特征数据、三维模型和贴图数据的一体化管理,但是三维模型数据入库前也要对数据进行编辑,统一数据格式,以保证三维模型数据入库前后效果的一致性。
三、三维数据无法归档全部信息。即便是欧美国家提出的STEP标准,三维数据的归档也只能保存50%左右的信息。如果以软硬件环境全部归档的方式解决现有问题的话,不仅耗费大量资源,成本极高,而且因原系统升级等原因也很难保证数据的可读可用性。所以在目前技术条件下,在技术尚未达到能够满足业务部门的全部需求时,只能像STEP标准只归档部分信息,但是需要对三维模型数据的标注信息和元数据信息进行规范化管理。
四、三维模型的安全控制难度较大:电子文件载体与信息的可分离性、对系统的依赖性以及载体的不稳定性,使得它与纸质文件相比,安全控制难度更大。同时三维模型无法进行纸质化管理,所有的安全控制措施只能在计算机系统中实施,一旦发生 *** 作失误、病毒入侵、软硬件系统故障等事故,很难确保其安全。
从档案管理的角度来看,存在以下问题:
一、重使用、轻归档。三维设计系统大多重视设计流程中相关功能的开发与运用,集中系统优势在设计环节,普遍忽视对于三维数据归档功能的设置,导致系统的先天缺陷。
二、三维数据管理制度及标准出台滞后。对于新的数据保存方式,数据库与设计资源库的建库方式缺失标准规范的指导,同时三维数据归档保存格式目前无论从国家层面还是行业方面均缺乏与技术发展协同性的标准指导。
三、缺乏对元数据的应有认知和管理举措。没有以元数据管理方式对三维数据生成及全生命周期的完整管理,导致三维数据“四性”难以保证。伴随着数据交互、发送、回传、 设计更改等多项工作,三维数据不断损失着众多具有保存价值的过程信息,归档与保存环节系统功能的再度弱化,直至对数据有效性、完整性、真实性的管理底线濒临失守。
四、基础设施与系统功能“分而治之”。由于各领域对三维技术的认识程度、原有技术基础、主要运用领域等方面的不同,企业对三维设计基础设施设备、系统功能、系统 *** 作人员配备存在众多差异;同时,由于三维设计软件的软件优势不同,各类不同产品设计领域因研制需要,选用三维设计基础设施与系统功能存在较大偏向性,由此导致了数据管理方式的多种差异;由于各系统自身的特点,在数据受控和归档模块的设置上存有多种做法,对于三维模型整体数据流的产生、流转、入库管理都将以不同方式进行分散而孤立发展,致使数据管理对象定义受限,难以实现统一化的数据归档模式并理顺普通适用的数据管理方式。
五、管理标准“多方缺失”。三维数据作为电子文件的新形式,人们更多注重三维设计手段对设计工作带来的全新体验, 对于产品展示效果新的感观,但是三维数据归档保存格式目前无论从国家层面还是行业方面均缺乏与技术发展协同性的标准指导;同时,二维设计文档向三维数模转换,以及三维数据长期保存格式也未有可遵循的相关标准;对于新的数据保存方式,数据库与设计资源库的建库方式同样缺失标准规范的指导。目前三维数据的档案管理工作几乎处于零标准、零规范的待开发状态。
六、数据全生命周期管理“节节弱化”。企业中三维设计平台由于体系结构、功能设计、技术标准各不相同,三维数据的管理自生命周期开始就处于一种松散状态, 三维设计系统大多重视设计流程中相关功能的开发与运用,集中系统优势在设计环节,忽视对于三维数据归档功能的设置,更没有以元数据管理方式对三维数据生成及全生命周期的完整管理;伴随着数据交互、发送、回传、设计更改等多项工作,三维数据不断损失着众多具有保存价值的过程信息,归档与保存环节系统功能的再度弱化,直至对数据有效性、完整性、真实性的管理底线濒临失守。
以上就是关于工作流程与建库方法全部的内容,包括:工作流程与建库方法、java如何实现每20条数据选择一条入库、三维数据档案管理要求有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)