数据库常见的数据模型有哪三种

数据库常见的数据模型有哪三种,第1张

层次模型、网状模型、关系模型

1、层次模型:

①有且只有一个结点没有双亲结点(这个结点叫根结点)。

②除根结点外的其他结点有且只有一个双亲结点。

层次模型中的记录只能组织成树的集合而不能是任意图的集合。在层次模型中,记录的组织不再是一张杂乱无章的图,而是一棵"倒长"的树。

2、网状模型 :

①允许一个以上的结点没有双亲结点。

②一个结点可以有多个双亲结点。

网状模型中的数据用记录的集合来表示,数据间的联系用链接(可看作指针)来表示。数据库中的记录可被组织成任意图的集合。

3、关系模型: 

关系模型用表的集合来表示数据和数据间的联系。

每个表有多个列,每列有唯一的列名。

在关系模型中,无论是从客观事物中抽象出的实体,还是实体之间的联系,都用单一的结构类型。

数据库模型有对象模型、层次模型(轻量级数据访问协议)、网状模型(大型数据储存)、关系模型、面向对象模型、半结构化模型、平面模型(表格模型,一般在形式上是一个二维数组。如表格模型数据Excel)。

目前最主流的sql server、oracle、mysql、db2都是关系型数据库。随着社交网站、视频网站等互联网新业务模式的兴起,各种非关系数据库模型也在不断涌现。

以下是copy的:

数据模型概述

1关系模型

关系模型使用记录(由元组组成)进行存储,记录存储在表中,表由架构界定。表中的每个列都有名称和类型,表中的所有记录都要符合表的定义。SQL是专门的查询语言,提供相应的语法查找符合条件的记录,如表联接(Join)。表联接可以基于表之间的关系在多表之间查询记录。

表中的记录可以被创建和删除,记录中的字段也可以单独更新。

关系模型数据库通常提供事务处理机制,这为涉及多条记录的自动化处理提供了解决方案。

对不同的编程语言而言,表可以被看成数组、记录列表或者结构。表可以使用B树和哈希表进行索引,以应对高性能访问。

2键值存储

键值存储提供了基于键对值的访问方式。

键值对可以被创建或删除,与键相关联的值可以被更新。

键值存储一般不提供事务处理机制。

对不同的编程语言而言,键值存储类似于哈希表。对此,不同的编程语言有不同的名字(如,Java称之为“HashMap”,Perl称之为“hash”,Python称之为“dict”,PHP称之为“associative array”),C++则称之为“boost::unordered_map<>”。

键值存储支持键上自有的隐式索引。

键值存储看起来好像不太有用,但却可以在“值”上存储大量信息。“值”可以是一个XML文档,一个JSON对象,或者其它任何序列化形式。

重要的是,键值存储引擎并不在意“值”的内部结构,它依赖客户端对“值”进行解释和管理。

3文档存储

文档存储支持对结构化数据的访问,不同于关系模型的是,文档存储没有强制的架构。

事实上,文档存储以封包键值对的方式进行存储。在这种情况下,应用对要检索的封包采取一些约定,或者利用存储引擎的能力将不同的文档划分成不同的集合,以管理数据。

与关系模型不同的是,文档存储模型支持嵌套结构。例如,文档存储模型支持XML和JSON文档,字段的“值”又可以嵌套存储其它文档。文档存储模型也支持数组和列值键。

与键值存储不同的是,文档存储关心文档的内部结构。这使得存储引擎可以直接支持二级索引,从而允许对任意字段进行高效查询。支持文档嵌套存储的能力,使得查询语言具有搜索嵌套对象的能力,XQuery就是一个例子。MongoDB通过支持在查询中指定JSON字段路径实现类似的功能。

4列式存储

如果翻转数据,列式存储与关系存储将会非常相似。与关系模型存储记录不同,列式存储以流的方式在列中存储所有的数据。对于任何记录,索引都可以快速地获取列上的数据。

Map-reduce的实现Hadoop的流数据处理效率非常高,列式存储的优点体现的淋漓极致。因此,HBase和Hypertable通常作为非关系型数据仓库,为Map-reduce进行数据分析提供支持。

关系类型的列标对数据分析效果不好,因此,用户经常将更复杂的数据存储在列式数据库中。这直接体现在Cassandra中,它引入的“column family”可以被认为是一个“super-column”。

列式存储支持行检索,但这需要从每个列获取匹配的列值,并重新组成行。

5图形数据库

图形数据库存储顶点和边的信息,有的支持添加注释。

图形数据库可用于对事物建模,如社交图谱、真实世界的各种对象。IMDB(Internet Movie Database)站点的内容就组成了一幅复杂的图像,演员与**彼此交织在一起。

图形数据库的查询语言一般用于查找图形中断点的路径,或端点之间路径的属性。Neo4j是一个典型的图形数据库。

选择哪一种数据模型?

数据模型有着各自的优缺点,它们适用于不同的领域。不管是选择关系模型,还是非关系模型,都要根据实际应用的场景做出选择。也许你会发现单一的数据模型不能满足你的解决方案,许多大型应用可能需要集成多种数据模型。

一、航空物探数据库定位

数据库是信息系统的基础和核心,把大量的数据信息按一定的模型组织起来存储在数据库中,提供数据维护、数据检索等功能,使信息系统能方便、及时、准确地从数据库中获得所需的信息。因此,数据库结构设计是信息系统开发的重中之重。

经分析航空物探数据具有空间性、海量性、多源性和多尺度的特点,这说明航空物探数据具有典型的空间数据的特点,可以采用空间数据管理方式进行管理。

ESRI公司的Geodatabase(空间数据库)是采用标准关系数据库技术来表现地理信息的面向对象的高级GIS数据模型,是建立在DBMS之上的统一的、智能化的空间数据模型,是以一组相关联的表来表达地理要素之间关系、有效性规则和值域。对于多源、海量的航空物探数据,Geodatabase能在一个统一的模型框架下很好地解决多源数据一体化存储的问题,和采用标准关系数据库技术来表现海量航空物探数据的地理信息特性。Geoda-tabase引入了地理空间实体的行为、有效性规则和关系,在处理Geodatabase中对象时,对象的基本行为和必须满足的规则无需通过程序编码实现,只需根据需要扩展其有效性规则(Geodatabase面向对象的智能化特性),即可支持航空物探数据模型扩展的需要。

因此,航空物探数据库是空间数据库,在航空物探数据库建模过程中,以空间数据建模为主导,统领属性数据建模。

二、统一空间坐标框架

为了用数学语言描述地球,人们用规则的几何形体来替代地球表面,从地球自然表面、大地水准面、旋转椭球面直到用简单数学函数表达的参考椭球体,以便通过地图投影将三维曲面转化成二维平面。由于地球表面不同地区的地形起伏差异很大,采用单一椭球体势必会造成某地区的误差小而其他地区误差很大的结果。因此,在20世纪初不同国家或地区先后采用了逼近本国或本地区地球表面的椭球体,如中国的克拉索夫斯基椭球体,美国的海福特椭球体、英国的克拉克椭球体等。这又造成了目前世界各国的地理信息空间坐标框架不统一,空间数据信息难以共享被动局面。为此,在实现数字地球计划中,必须规范和统一世界上不同国家和地区的地球参考椭球体。

在小区域表达地球表面时,通常采用平面的方式,即投影坐标系统。如何科学地选择投影坐标,一般要根据具体的地学应用、地理区域和范围、比例尺条件等因素来确定,不同的国家有着不同的规定。

通过对航空物探数据的坐标系统进行分析可知,航空物探图件的坐标框架与国家对基本比例尺制图的规定相一致,即小比例尺编图采用Lambert双标准纬线等角圆锥投影;中比例尺采用Gauss6°带的分带投影;大比例尺采用Gauss3°带的分带投影(表2-1);对于低纬度的海上作业区通常采用Mecator等角圆柱投影。地球椭球体分别采用1954北京坐标系的Krassovsky椭球参数、WGS84椭球参数和未来的国家2000坐标系的椭球参数。

表2-1 航空物探地理坐标数据的投影方式

传统的航空物探数据是按测区管理的,根据测区的测量比例尺来确定相应的坐标框架;因此,勘探目标不同的测区测量比例尺是不一致的,地坐标框架也不同。航空物探数据库要将不同测区、不同比例尺、不同坐标框架的数据集中管理和可视表达,若没有统一的空间坐标框架,就不可能正确地表达全国航空物探数据。所以,面对如此复杂的多坐标框架的航空物探数据,如何确定科学合理的空间坐标框架,将全国的航空物探数据整合到统一的空间参考框架下,实现数据的统一存储和数据间无缝拼接,是航空物探数据库建设的关键所在,是组织和管理多维、多格式、大跨度、跨平台的航空物探数据和多目标数字制图的数学基础。

统一的空间坐标框架必须支持我国领土覆盖的海域和陆域航空物探数据的存储和表达。我国领土东西跨度达70°,南北达55°,显然采用任何投影坐标系都是不合适的。Gauss6°投影适合6°带内空间数据表达,若全国航物探数据采用6°分带表达,在高纬度地区会造成6°带间数据裂缝问题;Lambert投影可满足数据的无缝表达,但对大比例尺数据变形较大,无法满足数据制图的精度要求;Mecator投影也可满足数据的无缝表达,低纬度地区也能满足大比例尺数据制图的精度要求,但在我国中高纬度区存在着严重变形问题。所以,航空物探数据模型采用地理坐标(无投影,图2-1)格式存放,可根据实际应用的需要将航空物探数据变换到任何方式的投影坐标系统。

航空物探数据库模型采用Beijing_1954地理坐标系,相关参数如下:

角度单位:°(0017453292519943299rad)

零经线:格林尼治(0000000000000000000)

基准:D_Beijing_1954

椭球:Krasovsky_1940

长轴半径:6378245000m

短轴半径:6356863019m

建立统一坐标框架是空间数据库建设的一项基础性工作,采用Beijing_1954地理坐标系作为航空物探数据库统一空间坐标框架具有以下优点。

图2-1 统一空间坐标框架示意图

(一)无缝空间数据存储

统一空间坐标框架解决了复杂的航空物探数据的坐标系统、投影、比例尺等不统一的问题,实现同一性质的物探数据在同一个主题中进行管理。如全国的航磁异常数据可放在一个图层上进行管理。

(二)适合多尺度表达

按测区管理的多尺度、多框架的航空物探数据是处于一个相对坐标系统中,各个测区间相对位置关系会发生错位。采用统一的Beijing_1954地理坐标框架,恢复了各测区间正确的位置关系,实现不同尺度数据的集成和正确表达,易于多源异构空间数据的融合。

(三)大区域数据集成

我国海陆面积近1300×104km2,地域跨度较大。在进行小比例尺的航空物探编图时,需要选用与之相适应的投影坐标;在陆地和海域进行大比例尺制图时,同样需要选用合适投影系统。航空物探制图的实践也证明了这一点。1995年6月由中国、加拿大、美国、爱尔兰和俄罗斯等国科学家共同编制的1:1000万欧亚东北地区磁异常与大地构造图,采用横轴Mercator投影。中心编制的1:500万全国航磁图采用Lambert投影。2008年,由中国和吉尔吉斯斯坦科学家编制的1:100万中吉天山金属矿产成矿规律图,采用Lambert投影,将两个国家不同时期、不同尺度的数据进行了有效的集成,是地质、地球物理等综合应用的典范。

随着航空物探数据应用领域的不断扩展,陆地、海域,甚至于洲际和全球航空物探数据的整体表达都需对坐标投影提出要求。采用统一的地理坐标框架的航空物探数据非常容易变换到指定的投影坐标框架,满足多样化的制图要求。

三、要素类和对象类的划分

Geodatabase空间数据库模型结构(图2-2)分为空间数据库、要素数据集(Feature dataset)、要素类(Feature classes)、要素(Feature)4个层次。为了建立航空物探Geoda-tabase空间数据模型,我们依据Geodatabase模型关于要素类和对象类的划分原则,结合相关的国家标准和地球物理行业标准,制定了《航空物探数据要素类和对象类划分标准》,对航空物探数据进行数据分类。

图2-2 空间数据库模型结构

1)按照航空物探数据的空间特征,将其划分为5个要素数据集,即勘查项目概况要素数据集、基础数据要素数据集、异常要素数据集、解释要素数据集和评价要素数据集。

2)根据航空物探测量方法、数据处理过程以及推断解释方法和过程,进一步把航空物探数据划分为若干要素类和对象类,定义了要素类的主题特征和表达方式,确定子类和属性域;定义对象类的结构和联接字段,建立了关系类。

3)定义要素类的内容、字段名称和存储结构。在航空物探数据采集过程中,不同类型的数据采样率不同,坐标数据采样2次/s,重力场数据采样2次/s,磁场数据采样10次/s,这就造成了场值数据与坐标数据无法一一对应问题。若按场值数据采样率内插坐标数据,将导致数据量成倍增长;若按坐标数据采样率抽稀场值数据,将降低航空物探测量对地质体的分辨能力,影响测量效果。在综合分析航空物探数据应用基础上,提出了采用要素数据与属性数据分置的方式,将测线坐标数据与地球物理场数据分离,分别建立独立共享的航迹线数据要素类模型,磁场、重力场等数据对象类模型(图2-3),很好地解决了航空物探数据的存储问题。

图2-3 要素数据与属性数据分置示意图

采用要素数据与属性数据分置方式,不仅是基于航空物探数据属性数据的多源性、不同采样频率等特点的考虑,还考虑到数据的综合查询和检索的速度,特别是通过ArcSDE访问空间数据库的效率的问题。再者,对于大部分用户来说,需求是属性数据的综合应用,因此在数据库建模过程中,将属性数据采用对象类的方式进行管理,不但提高了空间数据的 *** 作能力,同时在ArcSDE的配置上采用直接访问数据库(对象类)方式,并且加快了数据查询和统计的速度。

四、数据库概念模型

用户需求是数据库建设的约束条件之一。航空物探数据的空间特性决定航空物探数据库必须是空间数据库,采用数据库管理数据,利用GIS技术提供可视化服务,这是各个层次用户的一致要求。因此,我们从现实世界出发,对航空物探数据的多源性、多尺度和不同采样等问题进行了描述,提出了解决方案。此方案是不依赖于任何具体的硬件环境和数据库管理系统(DBMS),建立了客观反映现实世界的航空物探数据库概念模型,把用户需要管理的信息统一到整体概念结构中,表达了用户需要。

在全面分析航空物探业务流程和数据流程,以及航空物探数据特性的基础上,按照《航空物探数据要素类和对象类划分标准》,以及空间实体点、线、面要素特征的基本原则,对航空物探数据库所涉及的实体进行归类,划分成12个主题。根据空间数据分主题表达的特点和航空物探空间数据坐标框架的定义,确定航空物探数据库空间数据概念模型,明确各个主题的用途、数据来源、表达方式、空间参考、比例尺和精度等内容,按照ArcGIS定义空间数据库的数据分层表达方式(图2-4),完成航空物探数据库概念模型设计(图2-5)。

图2-4 航空物探数据库空间数据分层模型

图2-5 航空物探数据库空间数据概念模型

以上就是关于数据库常见的数据模型有哪三种全部的内容,包括:数据库常见的数据模型有哪三种、数据库模型有哪些、当前流行的数据库系统大都采用什么模型等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9499187.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存