曾福年 赵翠玲
(中国国土资源航空物探遥感中心,北京,100083)
摘要:本文探讨了建立SPOT5图像控制点数据库的原理和方法,介绍了如何建立适合于SPOT5校正的控制点数据库,并提取控制点与待纠正影像进行自动或人工干预匹配,寻找预正射影像上的同名点建立控制点对,实现对影像的几何纠正。
关键词:SPOT5图像;控制点数据库;匹配;几何纠正
1 引言
SPOT5图像的正射纠正是土地动态监测项目中图像处理的一个基本过程,无论是物理模型方程法还是多项式纠正法,都需要利用地面控制点来解算转换矩阵以实现几何纠正。目前,土地动态监测项目已经开始建立许多的图像控制点,包括正射纠正后的航空或高分辨遥感数字图像控制点、扫描纠正后的大比例数字地形图上图形控制点和新测的野外GPS图像控制点。但这些控制点要有效地利用起来,其关键是有效地管理这些控制点。这些控制点应该在使用后被存储,再次使用时可以重新调用和更新。因此,建立控制点数据库以实现控制点的有效利用就非常必要了。由于图像控制点的特殊性,本文就图像控制点数据库的建立和使用方法进行阐述。
图像控制点就是包含具有地理位置信息的一个地物的图像,其存储格式是带地理信息的栅格形式。图像控制点是利用影像之间的匹配来寻找预正射影像上的同名点,从而可以避免传统控制点的标志在预正射影像上不易于识别的困难。在计算机软硬件和模式识别技术的支持下,利用图像控制点来代替传统的控制点进行几何纠正,可以大大减轻劳动强度和提高作业效率与纠正精度。
2 图像控制点库建立
图像控制点数据库的根本目的是用来对控制点进行有效的管理并方便地提取控制点来实现图像的几何纠正。这要求数据库的设计应围绕着控制点的使用来进行。在进行SPOT5几何纠正时,待纠正影像的概略空间范围是根据SPOT5 的轨道参数已知的,控制点就是按照这个范围来提取的。控制点数据库首先实现以空间范围为基础的控制点查询是控制点数据库的最基本功能,同时,每一个图像控制点都包含两种数据,图像数据和属性数据,这两种数据的连接是应用控制点数据库的重要依据。应用控制点数据库应使用带有自动位置预测的遥感软件。图像控制点数据库的设计就是根据这三个基本原则来进行的。
21 图像控制点来源
图像控制点是以图像为基础,以矢量为辅的文件。
(1)把正射纠正后的航空或遥感数字图像上裁剪下来的典型区域的一小块范围的图像作为图像控制点。
(2)根据野外GPS控制点坐标,在原始图像上标注控制点的位置,并附带有原数据说明文档和实地数码相片。
(3)从扫描纠正后的数字地形图上得到的典型地物区域的一小块范围的数字图像作为图像控制点。
(4)图像控制点参考坐标系统应与要求的成果图像的坐标系统一致。
22 基础控制点库的内容
控制点库是管理图像控制点的,图像控制点包含两种数据:图像数据和属性数据。无论采用何种方式采集的图像控制点,都同时具有这两种数据。图像数据和属性数据分开存放在不同的库体之中,图像数据的存储格式是栅格形式,而且属性数据的存储格式是矢量形式。图像数据和属性数据必须建立存放在不同的库体之中的连接。
221 图像数据
图像控制点是以栅格形式存储的包含某一个明显地物的图像。在数据库中,由于栅格图像的特殊性,它无法像属性数据以一条记录来存储,每一个图像都是以栅格文件存储在一定的目录下,按目录来进行管理。图像的大小一般在100×100像素和200×200像素之间,以能包含一明显地物为准。图像控制点区别于传统的控制点就在于它有图像数据。图像中的明显地物是指在一定的范围内可以区别于周围其他地物的,可以是一个道路的交叉口,也可以是一个小河流的拐弯处,甚至可以是一个小岛。它的特点使得它在传统的控制点无法确定的区域能够选点进行几何纠正。
222 属性数据
属性数据是用来描述控制点的地理位置等关系的。一组图像要当作控制点来进行几何纠正,它们必须具有在某一确定的投影空间的正确的相互位置关系。图像控制点的地理位置就是由它们的属性数据来描述的,为了正确描述地理位置关系,每一个控制点的属性数据要具有和影像数据进行联结的一致ID标识号,以实现图像数据与属性数据的正确连接。所有控制点的属性数据格式是相同的,因此属性数据库是关系数据库,每一个图像控制点的属性以规定的格式记录。属性数据记录包括:图像控制点来源;控制点坐标;数据说明;参考椭球;影像的比例尺;超级连接的野外GPS控制点数码相片。
223 坐标系统
所有的图像控制点都是投影到一定的参考坐标系统里的。为了提高数据库的使用性能,正确表示控制点在整个数据库范围内的相互地理位置关系,控制点应该采用统一的坐标系统,以利于控制点的正确查询提取与使用。
23 控制点库的结构
不同地区的控制点数目不同,大范围地区的控制点数据量非常大。大范围地区单一的一个数据库对于控制点的查询使用是非常不便的,会降低数据库的性能,因此为了快速方便地查询提取控制点,就要以索引的方式来层层建库,形成一个树形结构的控制点库体。由于控制点是按空间的地理位置来分布的,因此按地理位置范围来将一个大的区域分为几个小的区域是合理的,而且可以根据实际的情况来对小的区域进行进一步的细分,由此从上到下建立一级一级的索引数据库。
顶级数据库是全局数据库,它描述的是整个建库范围内的分区数据库的信息,也是关系数据库。它的记录描述的内容是:子数据库的名称,子数据库所包含的范围信息等。根据实际的情况,子数据库中描述的可以是再下一级的数据库的信息,也可以是控制点的信息。
图1 树形数据库结构
在这个树形的数据库结构中,叶子数据库处在最基础位置,描述的是图像控制点的信息。当要从数据库中提取控制点时,就可以从顶端的数据库一层一层地向下查询,直至叶子数据库查询基础控制点库的内容,见图1。
从结构图看出,由于图像和属性数据是以文件存放在某一确定的目录中,图像数据库的管理实际就是对文件目录的管理。合理的组织文件目录才能够实现图像数据与属性数据的连接,这就要求目录的结构与命名和属性数据库要一致。
3 控制点库的应用
图像控制点库的目的就是有效地组织管理控制点,方便地提取某一影像范围内的控制点来进行几何纠正。一景待纠正的SPOT5 影像,由于原始数据轨道参数的导入,可以得到它的一个带有地理信息的影像。根据这个地理信息范围,从最上一级的控制点数据库开始,找到这一影像所在范围的子数据库,再进入下一级数据库,进行同样的判断,直至最底层的数据库,就可以提取出位于这一影像范围内的图像控制点,进行几何纠正。
一个控制点一旦被提取出来,就可以获取它的地理位置数据,根据它的位置和待纠正遥感影像的地理信息,可以自动匹配控制点在影像上的大致位置范围,在这一范围内进行搜索,可以大大缩小同名点匹配的搜索过程,提高匹配的速度和精度。
在使用控制点时,不管 GPS 控制点还是图像控制点,简单的方法是在待纠正的影像上标识出控制点的大致范围,这可以仅根据控制点的地理坐标和影像的范围来获取,然后用鼠标在计算机屏幕上通过点击来获取控制点的同名点的影像像素坐标。要实现几何纠正的自动化,就要利用影像的匹配技术来进行控制点与待纠正影像上的同名点的自动匹配。根据控制点的种类的不同,采取不同的匹配技术来进行。控制点数据库中应用过程参见图2。
图2 控制值数据库应用过程
31 遥感数字图像控制点配准方法
对正射纠正后的航空或遥感数字图像上裁剪下来的典型区域的一小块范围的图像作为图像控制点采用基于区域特征的和基于点特征的配准方法。
311 基于区域的配准方法
基于区域的配准方法是将待配准图像中一块区域与参考图像中的相同尺寸的区域从统计学上进行比较,其相似度评测标准是从两块区域的标准化交叉相关系数中取最大值者。也可以通过FFT变换将图像由时域变换到频域,然后再进行配准。对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。但如果图像中存在比较大的噪声和灰度差异时,这个交叉相关测量标准就变得不可靠。
312 基于点特征的配准方法
基于点特征的配准方法有较高的性能。它有两个过程:特征抽取和特征配准,一系列的图像分割技术都被用到特征的抽取和边界检测上。如Canny算子、拉普拉斯高斯算子、区域生长算子。抽取出来的空间特征有闭合的边界、开边界、交叉线以及其他特征。特征匹配的算法有:交叉相关、距离变换、动态编程、结构匹配等算法。
32 GPS 控制点配准方法
对野外GPS控制点在原始图像上标注控制点的位置和扫描纠正后的数字地形图上得到的典型地物区域的一小块范围的数字图像作为控制点采用人工匹配同名点的方法。
由于地形图控制点所提供的仅是地物的一个结构信息,类似于影像的纹理。它不反映地物的光谱信息,与待纠正影像上的内容不一致;它不能利用控制点片中的数据直接来进行影像匹配。因此,只能利用这一个结构信息采用人工匹配同名点的方法,在可以自动预测控制点在影像上的大致位置范围内,根据影像的纹理特征寻找控制点的同名点。
综合上述方法,在对足够数目的控制点进行匹配找到同名点后,就可以根据这些控制点解算转换矩阵实现几何纠正。
图像控制点库的建立是一项基础的工作,大量的数据要输入数据库。一旦数据库建立起来,可以利用最新的遥感数据进行更新,当需要利用控制点对新的遥感数据进行几何纠正时,可以方便快捷地提取控制点,提高工作效率,为土地调查工作提供技术保障。
参考文献
Barbara Zitová and Jan Flusser“Image registration methods:a survey”Imaging and VisionComputing,vol21,pp977~1000,2003
张祖勋,张剑清数字摄影测量学武汉:武汉测绘科技大学出版社,1996
张祖勋、张剑清山区遥感(RS)影像的小面元微分纠正第三届海峡两岸测绘发展研讨会论文集,2000,12
陈跃峰,肖自美基于内容查询的图像数据库系统模型[J]中国图像图形学报,1997
《以太坊技术详解与实战》(闫莺)电子书网盘下载免费在线阅读
vcdy
书名:以太坊技术详解与实战
作者:闫莺
豆瓣评分:77
出版社:机械工业出版社
出版年份:2018-4-3
页数:226
内容简介:
以太坊创始人、首席科学家Vitalik Buterin倾力推荐,工业界与学术界区块链专家联合撰写,权威性和实用性毋庸置疑。本书深入剖析以太坊架构、核心部件、智能合约编写与开发案例等关键技术,并涵盖以太坊数据分析、性能优化、隐私与数据安全等前沿实践与进展。
作者简介:
闫莺 (博士),微软亚洲研究院主管研究员,区块链领域负责人,微软Coco区块链平台中国负责人。中国软件协会区块链创业学院及区块链专委会专家、中国电子学会区块链专家委员。专注与区块链技术、大数据分析、数据库以及云计算的研究。在区块链领域获得多项国际专利,并在数据库和云计算 领域国际顶级会议和期刊发表论文30余篇。参与翻译《区块链项目开发指南》。
郑凯 (博士),电子科技大学教授,博士生导师,澳大利亚昆士兰大学计算机科学博士。主要研究领域为区块链数据管理,以及时空数据挖掘、不确定数据库、内存数据库、图数据库等。在数据库、数据挖掘等领域的重要会议和期刊发表论文100余篇,被累积引用1500余次。2013年获澳大利亚优秀青年基金,2015年获数据库顶级会议ICDE最佳论文奖。担任数据库领域知名国际会议的程序主席和联合执行主席,国际SCI期刊客座编委,以及数十个国际等级会议的程序委员。
郭众鑫 微软亚洲研究院研发工程师,微软Coco区块链平台核心开发者。专注于区块链技术、大数据分析、分布式系统等方面的研究和开发。
1、科学引文索引(Science Citation Index、缩写:SCI)是由美国科学资讯研究所(Institute for Scientific Information,简称ISI)于1960年上线投入使用的一部期刊文献检索工具,其出版形式包括印刷版期刊和光盘版及联机数据库。
2、社会科学引文索引(Social Sciences Citation Index, SSCI)是一种跨学科的学术引用文献索引,由美国科学资讯研究所(Institute for Scientific Information, ISI)所发展,类似于科学引文索引,为汤森路透(Thomson Reuters)的产品。
扩展资料影响
科学引文索引以布拉德福(S C Bradford)文献离散律理论、以加菲尔德(E Garfield)引文分析理论为主要基础,通过论文的被引用频次等的统计,对学术期刊和科研成果进行多方位的评价研究,从而评判一个国家或地区、科研单位、个人的科研产出绩效,来反映其在国际上的学术水平。因此,SCI是目前国际上被公认的最具权威的科技文献检索工具。
科学引文索引以其独特的引证途径和综合全面的科学数据,通过统计大量的引文,然后得出某期刊某论文在某学科内的影响因子、被引频次、即时指数等量化指标来对期刊、论文等进行排行。被引频次高,说明该论文在它所研究的领域里产生了巨大的影响,被国际同行重视,学术水平高。由于SCI收录的论文主要是自然科学的基础研究领域,所以SCI指标主要适用于评价基础研究的成果,而基础研究的主要成果的表现形式是学术论文。
参考资料:
百度百科 科学引文索引
百度百科 社会科学引文索引
url=“h
t
t
p:
//
您的顶级域名/
目录/
文件名字”
url1
=
right
(url,len(url)-7)
去除>
以上就是关于图像控制点库的建立及应用方法探讨全部的内容,包括:图像控制点库的建立及应用方法探讨、《以太坊技术详解与实战》pdf下载在线阅读全文,求百度网盘云资源、SCI和SSCI是什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)