DCGAN增强图片数据集

DCGAN增强图片数据集,第1张

DCGAN增强图片数据集 DCGAN增强图片数据集 1.Dependencies
  • Python 3.6+

  • PyTorch 0.4.0

  • numpy 1.14.1, matplotlib 2.2.2, scipy 1.1.0

  • imageio 2.3.0

  • tqdm 4.24.0

2.DCGAN

步骤:

  • 将图片数集放在/Anime_GAN/DCGAN/faces

  • 进行如下的命令:

  $ cd Anime_GAN/DCGAN/
$ python main.py --help # 查看默认参数信息,根据需求可进行修改

执行完上述命令会产生相应的一张图片(存储位 置:/Anime_GAN/DCGAN/saved/img/xx.png)

  • 调用SegmentePictures.py进行图片的切割

$ cd DCGAN/saved
$ python SegmentePictures.py   
# encoding:utf-8
from PIL import Image
import sys
import math
import argparse def fill_image(image):
"""
将图片填充为正方形
:param image:
:return:
"""
width, height = image.size
#选取长和宽中较大值作为新图片的
new_image_length = width if width > height else height
#生成新图片[白底]
new_image = Image.new(image.mode, (new_image_length, new_image_length), color='white')
#将之前的图粘贴在新图上,居中
if width > height:#原图宽大于高,则填充图片的竖直维度
#(x,y)二元组表示粘贴上图相对下图的起始位置
new_image.paste(image, (0, int((new_image_length - height) / 2)))
else:
new_image.paste(image,(int((new_image_length - width) / 2),0)) return new_image def cut_image(image,cut_num):
"""
切图
:param image:
:return:
"""
flag_value = int(math.sqrt(cut_num))
width, height = image.size
item_width = int(width / flag_value)
box_list = []
for i in range(0,flag_value):
for j in range(0,flag_value):
box = (j*item_width,i*item_width,(j+1)*item_width,(i+1)*item_width)
box_list.append(box)
image_list = [image.crop(box) for box in box_list] return image_list def save_images(image_list):
"""
保存
:param image_list:
:return:
"""
index = 1
for image in image_list:
image.save('./img_add/'+str(index) + '.png', 'PNG')
index += 1 def main():
parse = argparse.ArgumentParser() parse.add_argument("--lr", type=float, default=0.0001,
help="learning rate of generate and discriminator")
parse.add_argument("--beta1", type=float, default=0.5,
help="adam optimizer parameter")
parse.add_argument("--batch_size", type=int, default=81,
help="number of dataset in every train or test iteration")
parse.add_argument("--epochs", type=int, default=0,
help="number of training epochs")
parse.add_argument("--loaders", type=int, default=4,
help="number of parallel data loading processing")
parse.add_argument("--size_per_dataset", type=int, default=30000,
help="number of training data") args = parse.parse_args() file_path = "./img/"+args.epochs+".png" # 图片路径
image = Image.open(file_path)
image = fill_image(image)
image_list = cut_image(image,batch_size)
save_images(image_list) if __name__ == '__main__':
main()

需要注意的是:下面的命令中batch_size的数一定要一致

$ python main.py --batch_size=xx 

$ python SegmentePictures.py --batch_size=xx 
3.遇到的问题

RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 370 and 667 in dimension 2 at /pytorch/aten/src/TH/generic/THTensor.cpp:711

  • 错误分析:使用DataLoader加载图像,这些图像中的一些具有3个通道(彩色图像),而其他图像可能具有单个通道(BW图像),由于dim1的尺寸不同,因此无法将它们连接成批次。


    尝试将img = img.convert(‘RGB’)添加到数据集中的getitem中。


  • 将图片的通道进行统一

    from PIL import Image
    import matplotlib.pyplot as plt
    import os


    def GetAllFiles(dir):
    files_ = []
    list = os.listdir(dir)
    for i in range(0, len(list)):
    path = os.path.join(dir, list[i])
    if os.path.isdir(path):
    files_.extend(GetAllFiles(path))
    if os.path.isfile(path):
    files_.append(path)
    return files_

    def ConvertRGB():
    """
    将图片转换为RGB格式
    :return:
    """
    files_ = GetAllFiles(file_path)
    for id,item in enumerate(files_):
    img=Image.open(item)
    gray=img.convert('RGB')
    plt.imshow(gray)
    plt.axis('off')
    save_path = "./save_img"+"\\"+str(id)+".jpg"
    plt.savefig(save_path)
    # plt.show()

    if __name__ == "__main__":
    file_path = "your path"
    ConvertRGB()

参考链接:https://github.com/FangYang970206/Anime_GAN/blob/master/README.md

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/587307.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-12
下一篇 2022-04-12

发表评论

登录后才能评论

评论列表(0条)

保存