数据库有哪些类型

数据库有哪些类型,第1张

模糊数据

指能够处理模糊数据的数据库。一般的数据库都是以二直逻辑和精确的数据工具为基础的,不能表示许多模糊不清的

事情。随着模糊数学理论体系的建立,人们可以用数量来描述模糊事件并能进行模糊运算。这样就可以把不完全性、不确定性、模糊性引入数据库系统中,从而形成模糊数据库。模糊数据库研究主要有两方面,首先是如何在数据库中存放模糊数据;其次是定义各种运算建立模糊数据上的函数。模糊数的表示主要有模糊区间数、模糊中心数、模糊集合数和隶属函数等。

统计数据库

管理统计数据的数据库系统。这类数据库包含有大量的数据记录,但其目的是向用户提供各种统计汇总信息,而不是提供单个记录的信息。

网状数据库

处理以记录类型为结点的网状数据模型的数据库。处理方法是将网状结构分解成若干棵二级树结构,称为系。系类型

是二个或二个以上的记录类型之间联系的一种描述。在一个系类型中,有一个记录类型处于主导地位,称为系主记录类

型,其它称为成员记录类型。系主和成员之间的联系是一对多的联系。网状数据库的代表是DBTG系统。1969年美国的

CODASYL组织提出了一份“DBTG报告”,以后,根据DBTG报告实现的系统一般称 为DBTG系统。现有的网状数据库系统大都是采用DBTG方案的。DBTG系统是典型的三级结构体系:子模式、模式、存储模式。相应的数据定义语言分别称为子模式定义语言SSDDL,模式定义语言SDDL,设备介质控制语言DMCL。另外还有数据 *** 纵语言DML。

演绎数据库

是指具有演绎推理能力的数据库。一般地,它用一个数据库管理系统和一个规则管理系统来实现。将推理用的事实数据存放在数据库中,称为外延数据库;用逻辑规则定义要导出的事实,称为内涵数据库。主要研究内容为,如何有效地计

算逻辑规则推理。具体为:递归查询的优化、规则的一致性维护等。

常用数据库

1 IBM 的DB2

作为关系数据库领域的开拓者和领航人,IBM在1997年完成了System R系统的原型,1980年开始提供集成的数据库服务器—— System/38,随后是SQL/DSforVSE和VM,其初始版本与SystemR研究原型密切相关。DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 61则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括Linux在内的一系列平台。

2 Oracle

Oracle 前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发关系数据库的厂商之一,其产品支持最广泛的 *** 作系统平台。目前Oracle关系数据库产品的市场占有率名列前茅。

3 Informix

Informix在1980年成立,目的是为Unix等开放 *** 作系统提供专业的关系型数据库产品。公司的名称Informix便是取自Information 和Unix的结合。Informix第一个真正支持SQL语言的关系数据库产品是Informix SE(StandardEngine)。InformixSE是在当时的微机Unix环境下主要的数据库产品。它也是第一个被移植到Linux上的商业数据库产品。

4 Sybase

Sybase公司成立于1984年,公司名称“Sybase”取自“system”和 “database” 相结合的含义。Sybase公司的创始人之一Bob Epstein 是Ingres 大学版(与System/R同时期的关系数据库模型产品)的主要设计人员。公司的第一个关系数据库产品是1987年5月推出的Sybase SQLServer10。Sybase首先提出Client/Server 数据库体系结构的思想,并率先在Sybase SQLServer 中实现。

5 SQL Server

1987 年,微软和 IBM合作开发完成OS/2,IBM 在其销售的OS/2 ExtendedEdition 系统中绑定了OS/2Database Manager,而微软产品线中尚缺少数据库产品。为此,微软将目光投向Sybase,同Sybase 签订了合作协议,使用Sybase的技术开发基于OS/2平台的关系型数据库。1989年,微软发布了SQL Server 10 版。

6 PostgreSQL

PostgreSQL 是一种特性非常齐全的自由软件的对象——关系性数据库管理系统(ORDBMS),它的很多特性是当今许多商业数据库的前身。PostgreSQL最早开始于BSD的Ingres项目。PostgreSQL 的特性覆盖了SQL-2/SQL-92和SQL-3。首先,它包括了可以说是目前世界上最丰富的数据类型的支持;其次,目前PostgreSQL 是唯一支持事务、子查询、多版本并行控制系统、数据完整性检查等特性的唯一的一种自由软件的数据库管理系统

7mySQL

mySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQL AB公司。在2008年1月16号被Sun公司收购。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。MySQL的官方网站的网址是: >

ASP数据库类型DBFDBCMDBExcelSQLServer

数据库是在计算机存储设备上按一定方式,合理组织并存储的相互有关联的数据的集合,是计算机技术和信息检索技术相结合的产物,是电子信息资源的主体,是信息检索系统的核心部分之一。按所提供的信息内容,数据库主要可分为参考数据库和源数据库。

1.参考数据库

主要存储一系列描述性信息内容,指引用户到另一信息源以获得完整的原始信息的一类数据库,主要包括书目数据库和指南数据库。

(1)书目数据库 存储描述如目录、题录、文摘等书目线索的数据库,又称二次文献信息数据库。如各种图书馆目录数据库、题录数据库和文摘数据库等属于此类,它的作用是为用户指出了获取原始信息的线索。

图书馆目录数据库,又称机读目录,其数据内容详细,除描述标题、作者、出版项等书目信息外,还提供用户索取原始信息的馆藏信息。题录、文摘数据库描述的数据内容与印刷型的题录、文摘相似,它提供了论文信息或专利信息等确定的信息来源,供用户检索。

(2)指南数据库 存储描述关于机构、人物、产品、活动等对象的数据库。与其它数据库相比,指南数据库为用户提供的不仅仅是有关信息,还包括各种类型的实体,多采用名称进行检索。如存储生产与经营活动信息的机构名录数据库、存储人物信息的人物传记数据库、存储产品或商品信息的产品指南数据库、存储基金信息的基金数据库等属于此类,它的作用指引用户从其它有关信息源获取更详细的信息。

2.源数据库

主要存储全文、数值、结构式等信息,能直接提供原始信息或具体数据,用户不必再转查其它信息源的数据库。它主要包括全文数据库和数值数据库。

(1)全文数据库 存储原始信息全文或主要部分的一种源数据库。如期刊全文数据库、专利全文数据库、百科全书全文数据库,用户使用某一词汇或短语,便可直接检索出含有该词汇或短语的原始信息的全文。

(2)数值数据库 存储以数值表示信息为主的一种源数据库,和它类似的有文本-数值数据库。与书目数据库比较,数值数据库是对信息进行深加工的产物,可以直接提供所需的数据信息。如各种统计数据库、科学技术数据库等。数值数据库除了一般的检索功能外,还具有准确数据运算功能、数据分析功能、图形处理功能及对检索输出的数据进行排序和重新组织等方面的功能。

4.2.2 数据库结构

1.书目数据库的结构

书目数据库是以文档形式组织一系列数据,这些数据被称为记录,一个记录又包含若干字段

(1)记录与字段 记录是作为一个单位来处理有关数据的集合,是组成文档的基本数据单位。记录中所包含的若干字段,则是组成记录的基本数据单位。在书目数据库中,一个记录相当于一条题录或文摘,因此,一个记录通常由标题字段、作者字段、来源字段、文摘字段、主题词字段、分类号字段、语种字段等组成。在有些字段中,又包含多个子字段,子字段是字段的下级数据单位。如,主题词字段含有多个主题词。按照字段所代表记录的性质不同,字段通常分为基本字段和辅助字段两类。常见的字段名称及代码见表4-1。

表4-1 字段名称及代码

基本字段

辅助字段

字段名称

字段代码

字段名称

字段代码

标 题

TI

记录号

DN

文 摘

AB

作 者

AU

叙 词

DE

作者单位

CS

标识词

ID

期刊名称

JN

出版年

PY

出版国

CO

语 种

LA

(2)文档 按一定结构组织的相关记录的集合。文档是书目数据库数据组织的基本形式,文档的组织方式与检索系统的硬件和软件功能密切相关。在书目数据库中,文档结构主要分为顺排文档和倒排文档。

1)顺排文档 记录按顺序存放,记录之间的逻辑顺序与物理顺序是一致的,相当于印刷型工具中文摘的排列顺序,是一种线形文档。顺排文档是构成数据库的主体部分,但其主题词等特征的标识呈无序状态,直接检索时,必须以完整的记录作为检索单元,从头至尾查询,检索时间长,实用性较差。

2)倒排文档 将顺排文档中各个记录中含有主题性质的字段(如主题词字段、标题字段、叙词字段等)和非主题性质字段(如作者字段、机构字段、来源字段等)分别提取出来,按某种顺序重新组织得到的一种文档。具有主题性质的倒排档,称基本索引档,非主题性质的倒排档,称辅助索引档。

综上所述,顺排档和倒排档的主要区别是:顺排档以完整的记录为处理和检索单元,是主文档,倒排档以记录中的字段为处理和检索单元,是索引文档。计算机进行检索时,先进入倒排档查找有关信息的存取号,然后再进入顺排档按存取号查找记录。

2全文数据库的结构

一般的全文数据库结构与书目数据库相似,全文数据库的一个记录就是一个全文文本,记录分成若干字段。其主文档是以顺排形式组织的文本文档,倒排档是对应于记录可检字段的索引文档。

3数值数据库的结构

数值数据库的结构要综合考虑数据库的内容及检索目的,即,在内容上,数值数据库的主要内容是数值信息,但不排除含有必要的说明性的文本信息,在检索上,便于单项检索和综合检索,还能对数值进行准确数据运算、数据分析、图形处理及对检索输出的数据进行排序和重新组织。数值数据库的数据结构可以是单元式,也可以是表册形式。前者是对原始数据的模拟,后者则是对统计表格的机读模拟。数值数据库通常有多种文档,如顺排挡、倒排挡、索引文档等。顺排挡是由数值数据组成,为主文档,另有相应的索引文档,为便于存取,索引文档采用基本直接存取结构的组织形式。倒排挡也有相应的索引文档,索引文档采取分级组织形式。数值数据库的文档结构,使所有文档都可以用于检索,所有数据都可用来运算,构成了数值数据库的特点。

4.指南数据库的结构

指南数据库的结构兼有书目数据库、全文数据库和数值数据库的特点,有顺排档、倒排档、索引文档和数据字典。一般而言,对涉及主题领域较多,内容综合性较强的大型指南数据库,顺排挡(主文档)可采用多子文档的结构,对单一主题领域和内容较专的,则采用单一主文档和不定长、多字段的记录格式为宜。

楼上各位:

人家问题好象是问的数据库的种类,即数据库(DB)的类型问题,不是问的数据库管理系统(DBMS)的种类问题。我认为,就目前来讲数据库按其结构来讲,可分为三类:

1、层次型

2、网状型

3、关系型

上面,大家回答的都是处理关系型数据库系统。目前大多数集成开发环境(包括语言)都可以用来处理数据库,可以说不胜枚举。就关系型DBMS来说,我认为:

中小型的代表有Access、FoxBASE

中型的代表有VFP、dBASE、PB

大型的代表有oracle、SQL

根据存储模型划分,数据库类型主要可分为:

网状数据库(Network Database)、关系数据库(Relational Database)、树状数据库(Hierarchical Database)、面向对象数据库(Object-oriented Database)等。

商业应用中主要是关系数据库,比如Oracle、DB2、Sybase、MS SQL Server、Informax、MySQL等。

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。

数据库可以按照内容类型分类:书目、全文、数字和图像。在计算中,数据库有时根据其组织方法进行分类。有许多不同类型的数据库,从最流行的方法关系数据库到分布式数据库、云数据库或NoSQL数据库。

常用数据库:

1、关系型数据库

关系型数据库是由IBM的EF Codd于1970年发明的,它是一个表格数据库,其中定义了数据,因此可以以多种不同的方式对其进行重组和访问。

关系数据库由一组表组成,其中的数据属于预定义的类别。每个表在一个列中至少有一个数据类别,并且每一行对于列中定义的类别都有一个特定的数据实例。

结构化查询语言(SQL)是关系数据库的标准用户和应用程序接口。关系数据库易于扩展,并且可以在原始数据库创建之后添加新的数据类别,而不需要修改所有现有应用程序。

2、分布式数据库

分布式数据库是一种数据库,其中部分数据库存储在多个物理位置,处理在网络中的不同点之间分散或复制。

分布式数据库可以是同构的,也可以是异构的。同构分布式数据库系统中的所有物理位置都具有相同的底层硬件,并运行相同的 *** 作系统和数据库应用程序。异构分布式数据库中的硬件、 *** 作系统或数据库应用程序在每个位置上可能是不同的。

3、云数据库

云数据库是针对虚拟化环境(混合云、公共云或私有云)优化或构建的数据库。云数据库提供了一些好处,比如可以按每次使用支付存储容量和带宽的费用,还可以根据需要提供可伸缩性和高可用性。

云数据库还为企业提供了在软件即服务部署中支持业务应用程序的机会。

4、NoSQL数据库

NoSQL数据库对于大型分布式数据集非常有用。

NoSQL数据库对于关系数据库无法解决的大数据性能问题非常有效。当组织必须分析大量非结构化数据或存储在云中多个虚拟服务器上的数据时,它们是最有效的。

5、面向对象的数据库

使用面向对象编程语言创建的项通常存储在关系数据库中,但是面向对象数据库非常适合于这些项。

面向对象的数据库是围绕对象(而不是 *** 作)和数据(而不是逻辑)组织的。例如,关系数据库中的多媒体记录可以是可定义的数据对象,而不是字母数字值。

6、图形数据库

面向图形的数据库是一种NoSQL数据库,它使用图形理论存储、映射和查询关系。图数据库基本上是节点和边的集合,其中每个节点表示一个实体,每个边表示节点之间的连接。

图形数据库在分析互连方面越来越受欢迎。例如,公司可以使用图形数据库从社交媒体中挖掘关于客户的数据。

很长时间以来,关系型数据库一直是大公司的专利,市场被Oracle/DB2等企业数据库牢牢把持。但是随着互联网的崛起、开源社区的发展,上世纪九十年代MySQL10的发布,标志着关系型数据库的领域社区终于有可选择的方案。

MySQL

第一个介绍的单机RDBMS就是MySQL。相信大多数朋友都已经对MySQL非常熟悉,基本上MySQL的成长史就是互联网的成长史。我接触的第一个MySQL版本是MySQL40,到后来的MySQL55更是经典——基本所有的互联网公司都在使用。MySQL也普及了「可插拔」引擎这一概念,针对不同的业务场景选用不同的存储引擎是MySQLtuning的一个重要的方式。比如对于有事务需求的场景使用InnoDB;对于并发读取的场景MyISAM可能比较合适;但是现在我推荐绝大多数情况还是使用InnoDB,毕竟56后已经成为了官方的默认引擎。大多数朋友都基本知道什么场景适用MySQL(几乎所有需要持久化结构化数据的场景),我就不赘述了。

另外值得一提的是MySQL56中引入了多线程复制和GTID,使得故障恢复和主从的运维变得比较方便。另外,57(目前处于GA版本)是MySQL的一个重大更新,主要是读写性能和复制性能上有了长足的进步(在56版本中实现了SCHEMA级别的并行复制,不过意义不大,倒是MariaDB的多线程并行复制大放异彩,有不少人因为这个特性选择MariaDB。MySQL57MTS支持两种模式,一种是和56一样,另一种则是基于binloggroupcommit实现的多线程复制,也就是MASTER上同时提交的binlog在SLE端也可以同时被apply,实现并行复制)。如果有单机数据库技术选型的朋友,基本上只需要考虑57或者MariaDB就好了,而且56、57由Oracle接手后,性能和稳定性上都有了明显的提升。

PostgreSQL

PostgreSQL的历史也非常悠久,其前身是UCB的Ingres,主持这个项目的MichaelStronebraker于2023年获得图灵奖。后来项目更名为Post-Ingres,项目基于BSDlicense下开源。1995年几个UCB的学生为Post-Ingres开发了SQL的接口,正式发布了PostgreSQL95,随后一步步在开源社区中成长起来。和MySQL一样,PostgreSQL也是一个单机的关系型数据库,但是与MySQL方便用户过度扩展的SQL文法不一样的是,PostgreSQL的SQL支持非常强大,不管是内置类型、JSON支持、GIS类型以及对于复杂查询的支持,PL/SQL等都比MySQL强大得多,而且从代码质量上来看,PostgreSQL的代码质量是优于MySQL的,另外相对于MySQL57以前的版本,PostgreSQL的SQL优化器比MySQL强大很多,几乎所有稍微复杂的查询PostgreSQL的表现都优于MySQL。

从近几年的趋势上来看,PostgreSQL的势头也很强劲,我认为PostgreSQL的不足之处在于没有MySQL那样强大的社区和群众基础。MySQL经过那么多年的发展,积累了很多的运维工具和最佳实践,但是PostgreSQL作为后起之秀,拥有更优秀的设计和更丰富的功能。电脑培训发现PostgreSQL9以后的版本也足够稳定,在做新项目技术选型的时候,是一个很好的选择。另外也有很多新的数据库项目是基于PostgreSQL源码的基础上进行二次开发,比如Greenplum等。

以上就是关于数据库有哪些类型全部的内容,包括:数据库有哪些类型、数据库分为哪几类、数据库的类型等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9532445.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存