数据库概念模型

数据库概念模型,第1张

一、航空物探数据库定位

数据库是信息系统的基础和核心,把大量的数据信息按一定的模型组织起来存储在数据库中,提供数据维护、数据检索等功能,使信息系统能方便、及时、准确地从数据库中获得所需的信息。因此,数据库结构设计是信息系统开发的重中之重。

经分析航空物探数据具有空间性、海量性、多源性和多尺度的特点,这说明航空物探数据具有典型的空间数据的特点,可以采用空间数据管理方式进行管理。

ESRI公司的Geodatabase(空间数据库)是采用标准关系数据库技术来表现地理信息的面向对象的高级GIS数据模型,是建立在DBMS之上的统一的、智能化的空间数据模型,是以一组相关联的表来表达地理要素之间关系、有效性规则和值域。对于多源、海量的航空物探数据,Geodatabase能在一个统一的模型框架下很好地解决多源数据一体化存储的问题,和采用标准关系数据库技术来表现海量航空物探数据的地理信息特性。Geoda-tabase引入了地理空间实体的行为、有效性规则和关系,在处理Geodatabase中对象时,对象的基本行为和必须满足的规则无需通过程序编码实现,只需根据需要扩展其有效性规则(Geodatabase面向对象的智能化特性),即可支持航空物探数据模型扩展的需要。

因此,航空物探数据库是空间数据库,在航空物探数据库建模过程中,以空间数据建模为主导,统领属性数据建模。

二、统一空间坐标框架

为了用数学语言描述地球,人们用规则的几何形体来替代地球表面,从地球自然表面、大地水准面、旋转椭球面直到用简单数学函数表达的参考椭球体,以便通过地图投影将三维曲面转化成二维平面。由于地球表面不同地区的地形起伏差异很大,采用单一椭球体势必会造成某地区的误差小而其他地区误差很大的结果。因此,在20世纪初不同国家或地区先后采用了逼近本国或本地区地球表面的椭球体,如中国的克拉索夫斯基椭球体,美国的海福特椭球体、英国的克拉克椭球体等。这又造成了目前世界各国的地理信息空间坐标框架不统一,空间数据信息难以共享被动局面。为此,在实现数字地球计划中,必须规范和统一世界上不同国家和地区的地球参考椭球体。

在小区域表达地球表面时,通常采用平面的方式,即投影坐标系统。如何科学地选择投影坐标,一般要根据具体的地学应用、地理区域和范围、比例尺条件等因素来确定,不同的国家有着不同的规定。

通过对航空物探数据的坐标系统进行分析可知,航空物探图件的坐标框架与国家对基本比例尺制图的规定相一致,即小比例尺编图采用Lambert双标准纬线等角圆锥投影;中比例尺采用Gauss6°带的分带投影;大比例尺采用Gauss3°带的分带投影(表2-1);对于低纬度的海上作业区通常采用Mecator等角圆柱投影。地球椭球体分别采用1954北京坐标系的Krassovsky椭球参数、WGS84椭球参数和未来的国家2000坐标系的椭球参数。

表2-1 航空物探地理坐标数据的投影方式

传统的航空物探数据是按测区管理的,根据测区的测量比例尺来确定相应的坐标框架;因此,勘探目标不同的测区测量比例尺是不一致的,地坐标框架也不同。航空物探数据库要将不同测区、不同比例尺、不同坐标框架的数据集中管理和可视表达,若没有统一的空间坐标框架,就不可能正确地表达全国航空物探数据。所以,面对如此复杂的多坐标框架的航空物探数据,如何确定科学合理的空间坐标框架,将全国的航空物探数据整合到统一的空间参考框架下,实现数据的统一存储和数据间无缝拼接,是航空物探数据库建设的关键所在,是组织和管理多维、多格式、大跨度、跨平台的航空物探数据和多目标数字制图的数学基础。

统一的空间坐标框架必须支持我国领土覆盖的海域和陆域航空物探数据的存储和表达。我国领土东西跨度达70°,南北达55°,显然采用任何投影坐标系都是不合适的。Gauss6°投影适合6°带内空间数据表达,若全国航物探数据采用6°分带表达,在高纬度地区会造成6°带间数据裂缝问题;Lambert投影可满足数据的无缝表达,但对大比例尺数据变形较大,无法满足数据制图的精度要求;Mecator投影也可满足数据的无缝表达,低纬度地区也能满足大比例尺数据制图的精度要求,但在我国中高纬度区存在着严重变形问题。所以,航空物探数据模型采用地理坐标(无投影,图2-1)格式存放,可根据实际应用的需要将航空物探数据变换到任何方式的投影坐标系统。

航空物探数据库模型采用Beijing_1954地理坐标系,相关参数如下:

角度单位:°(0017453292519943299rad)

零经线:格林尼治(0000000000000000000)

基准:D_Beijing_1954

椭球:Krasovsky_1940

长轴半径:6378245000m

短轴半径:6356863019m

建立统一坐标框架是空间数据库建设的一项基础性工作,采用Beijing_1954地理坐标系作为航空物探数据库统一空间坐标框架具有以下优点。

图2-1 统一空间坐标框架示意图

(一)无缝空间数据存储

统一空间坐标框架解决了复杂的航空物探数据的坐标系统、投影、比例尺等不统一的问题,实现同一性质的物探数据在同一个主题中进行管理。如全国的航磁异常数据可放在一个图层上进行管理。

(二)适合多尺度表达

按测区管理的多尺度、多框架的航空物探数据是处于一个相对坐标系统中,各个测区间相对位置关系会发生错位。采用统一的Beijing_1954地理坐标框架,恢复了各测区间正确的位置关系,实现不同尺度数据的集成和正确表达,易于多源异构空间数据的融合。

(三)大区域数据集成

我国海陆面积近1300×104km2,地域跨度较大。在进行小比例尺的航空物探编图时,需要选用与之相适应的投影坐标;在陆地和海域进行大比例尺制图时,同样需要选用合适投影系统。航空物探制图的实践也证明了这一点。1995年6月由中国、加拿大、美国、爱尔兰和俄罗斯等国科学家共同编制的1:1000万欧亚东北地区磁异常与大地构造图,采用横轴Mercator投影。中心编制的1:500万全国航磁图采用Lambert投影。2008年,由中国和吉尔吉斯斯坦科学家编制的1:100万中吉天山金属矿产成矿规律图,采用Lambert投影,将两个国家不同时期、不同尺度的数据进行了有效的集成,是地质、地球物理等综合应用的典范。

随着航空物探数据应用领域的不断扩展,陆地、海域,甚至于洲际和全球航空物探数据的整体表达都需对坐标投影提出要求。采用统一的地理坐标框架的航空物探数据非常容易变换到指定的投影坐标框架,满足多样化的制图要求。

三、要素类和对象类的划分

Geodatabase空间数据库模型结构(图2-2)分为空间数据库、要素数据集(Feature dataset)、要素类(Feature classes)、要素(Feature)4个层次。为了建立航空物探Geoda-tabase空间数据模型,我们依据Geodatabase模型关于要素类和对象类的划分原则,结合相关的国家标准和地球物理行业标准,制定了《航空物探数据要素类和对象类划分标准》,对航空物探数据进行数据分类。

图2-2 空间数据库模型结构

1)按照航空物探数据的空间特征,将其划分为5个要素数据集,即勘查项目概况要素数据集、基础数据要素数据集、异常要素数据集、解释要素数据集和评价要素数据集。

2)根据航空物探测量方法、数据处理过程以及推断解释方法和过程,进一步把航空物探数据划分为若干要素类和对象类,定义了要素类的主题特征和表达方式,确定子类和属性域;定义对象类的结构和联接字段,建立了关系类。

3)定义要素类的内容、字段名称和存储结构。在航空物探数据采集过程中,不同类型的数据采样率不同,坐标数据采样2次/s,重力场数据采样2次/s,磁场数据采样10次/s,这就造成了场值数据与坐标数据无法一一对应问题。若按场值数据采样率内插坐标数据,将导致数据量成倍增长;若按坐标数据采样率抽稀场值数据,将降低航空物探测量对地质体的分辨能力,影响测量效果。在综合分析航空物探数据应用基础上,提出了采用要素数据与属性数据分置的方式,将测线坐标数据与地球物理场数据分离,分别建立独立共享的航迹线数据要素类模型,磁场、重力场等数据对象类模型(图2-3),很好地解决了航空物探数据的存储问题。

图2-3 要素数据与属性数据分置示意图

采用要素数据与属性数据分置方式,不仅是基于航空物探数据属性数据的多源性、不同采样频率等特点的考虑,还考虑到数据的综合查询和检索的速度,特别是通过ArcSDE访问空间数据库的效率的问题。再者,对于大部分用户来说,需求是属性数据的综合应用,因此在数据库建模过程中,将属性数据采用对象类的方式进行管理,不但提高了空间数据的 *** 作能力,同时在ArcSDE的配置上采用直接访问数据库(对象类)方式,并且加快了数据查询和统计的速度。

四、数据库概念模型

用户需求是数据库建设的约束条件之一。航空物探数据的空间特性决定航空物探数据库必须是空间数据库,采用数据库管理数据,利用GIS技术提供可视化服务,这是各个层次用户的一致要求。因此,我们从现实世界出发,对航空物探数据的多源性、多尺度和不同采样等问题进行了描述,提出了解决方案。此方案是不依赖于任何具体的硬件环境和数据库管理系统(DBMS),建立了客观反映现实世界的航空物探数据库概念模型,把用户需要管理的信息统一到整体概念结构中,表达了用户需要。

在全面分析航空物探业务流程和数据流程,以及航空物探数据特性的基础上,按照《航空物探数据要素类和对象类划分标准》,以及空间实体点、线、面要素特征的基本原则,对航空物探数据库所涉及的实体进行归类,划分成12个主题。根据空间数据分主题表达的特点和航空物探空间数据坐标框架的定义,确定航空物探数据库空间数据概念模型,明确各个主题的用途、数据来源、表达方式、空间参考、比例尺和精度等内容,按照ArcGIS定义空间数据库的数据分层表达方式(图2-4),完成航空物探数据库概念模型设计(图2-5)。

图2-4 航空物探数据库空间数据分层模型

图2-5 航空物探数据库空间数据概念模型

数据建模是一个用于定义和分析在组织的信息系统范围内支持商业流程所需的数据要求的过程。简单来说,数据建模是基于对业务数据的理解和数据分析的需要,将各类数据进行整合和关联,使得数据可以最终以可视化的方式呈现,让使用者能够快速地、高效地获取到数据中有价值的信息,从而做出准确有效的决策。

之所以数据建模会变得复杂且难度大,是因为在建模过程中会引入数学公式或模型,用于确定数据实体之间的关联关系。不同的业务逻辑和商业需求需要选择不同的数学公式或模型,而且,一个好的数据模型需要通过多次的测试和优化迭代来完成,这就使得数据建模的难度变得很高。但是,数据分析中的建模并没有想象中的那么高深莫测,人人都可以做出适合自己的模型。

数据建模总归是为了分析数据从而解决商业问题。如下图数据建模的流程图,数据建模核心部分是变量处理和模型搭建。

变量处理

在建模之前,首先要决定选择哪些变量进行建模,主要从业务逻辑和数据逻辑两方面来考虑。业务逻辑需要了解数据来源的背景,通过了解业务知识来判断哪些变量在业务上很有价值的,哪些变量是可以选择的。数据逻辑则是从数据的完整性,集中度,是否与其他变量强相关等角度来考虑。

除了选择变量,对于一些变量的重构也是需要在建模前进行。例如客户的满意度有“满意”“不满意”,可以将其重构成数字“0”和“1”,便于后续建模使用。除此以外,还有将变量单独计算(取平均值)和组合计算(如AB)也是常用的重构方法,例如,缺失值以数据取平均值的方式替换。

模型搭建

在模型搭建时,会经历选择算法、设定参数、加载算法、测试结果四个过程。在这个过程中,测试结果会引导调整之前设定的参数,加载算法会对应调整之前选择的算法,而选择算法时会考虑到已定的变量,如果变量不满足算法要求,还需回到选择/重构变量,直至得到最合适的模型。

在优化模型的过程中,模型的解释能力和实用性会不断地提升。在结果输出之后,还需接收业务人员的反馈,看看模型是否解决了他们的问题,如果没有,还需进一步修改和调整。

MicroStrategy在数据领域深挖企业需求,经过多年的研究和沉淀,结合众多复杂的应用场景,不断更新体验,深入开发各种数据辅助功能,使客户可以一站式链接各类型数据资源,完成数据导入和数据建模。在MicroStrategy 平台中,既支持传统方式数据建模,即通过Project Schema 来进行建模,又支持自助式数据导入的建模方式。

1、MySQLWorkbench

MySQLWorkbench是一款专为MySQL设计的ER/数据库建模工具。它是著名的数据库设计工具DBDesigner4的继任者。你可以用MySQLWorkbench设计和创建新的数据库图示,建立数据库文档,以及进行复杂的MySQL迁移

MySQLWorkbench是下一代的可视化数据库设计、管理的工具,它同时有开源和商业化的两个版本。该软件支持Windows和Linux系统,下面是一些该软件运行的界面截图:

2、数据库管理工具NavicatLite

NavicatTM是一套快速、可靠并价格相宜的资料库管理工具,大可使用来简化资料库的管理及降低系统管理成本。它的设计符合资料库管理员、开发人员及中小企业的需求。Navicat是以直觉化的使用者图形介面所而建的,让你可以以安全且简单的方式建立、组织、存取并共用资讯。

楼上说的到真的是,可以引用虚拟数据库里的元素,这样做的一个优点之一是可以降低开发的难度,因为不用要求开发人员了解数据结构就能开发了,变相的也提高了 开发效率,其二是将业务层与物理层,即需求和存储切分开来,使系统的架构更易读、合理。

缺点嘛,因为多了一层,所以在系统运行时会多一层解析,理论上说会降低系统的速度,但实际上也影响不大,其 二是这种手段适用于大中型系统的开发,对数据结构简单,就用到几张数据库表的小系统而言,难免会有画蛇添足 之嫌。

贴一个我正在做的数据建模。

以上就是关于数据库概念模型全部的内容,包括:数据库概念模型、什么是数据建模、求推荐在网页可视化sql数据库的3D模型工具等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9533152.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存