hadoop是数据库技术吗

hadoop是数据库技术吗,第1张

Hadoop不是数据库技术。Hadoop是一个由Apache基金会所开发的分布式系统基础架构。

用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。

Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。

选择开始菜单中→程序→ManagementSQLServer2008→SQLServerManagementStudio命令,打开SQLServerManagementStudio窗口,并使用Windows或SQLServer身份验证建立连接。在对象资源管理器窗口中服务器,然后选择数

大数据数量庞大,格式多样化。

大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。

它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。

因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

  一、大数据建设思路

  1)数据的获得

大数据产生的根本原因在于感知式系统的广泛使用。

随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。

这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。

因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。

  2)数据的汇集和存储

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了

数据只有不断流动和充分共享,才有生命力。

应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。

数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。

  3)数据的管理

大数据管理的技术也层出不穷。

在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。

其中分布式存储与计算受关注度最高。

上图是一个图书数据管理系统。

  4)数据的分析

数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。

大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。

批处理是先存储后处理,而流处理则是直接处理数据。

挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。

  5)大数据的价值:决策支持系统

大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。

  6)数据的使用

大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。

大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。

大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。

二、大数据基本架构

基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。

一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。

因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。

Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。

其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:

  Hadoop体系架构

(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。

(2)Hadoop的核心是MapReduce(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Reduce则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。

当处理大数据查询时,MapReduce会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。

(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。

Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。

Hbase利用MapReduce来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。

(4)Sqoop是为数据的互 *** 作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。

(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。

(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。

  Hadoop核心设计

  Hbase——分布式数据存储系统

Client:使用HBase RPC机制与HMaster和HRegionServer进行通信

Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况

HMaster: 管理用户对表的增删改查 *** 作

HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据

HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table

HStore:HBase存储的核心。

由MemStore和StoreFile组成。

HLog:每次用户 *** 作写入Memstore的同时,也会写一份数据到HLog文件

结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:

应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。

于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。

数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用惯,从而改进使用体验。

基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。

数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。

丰富的数据源是大数据产业发展的前提。

数据源在不断拓展,越来越多样化。

如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。

对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。

然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这降低了数据的价值。

  三、大数据的目标效果

通过大数据的引入和部署,可以达到如下效果:

  1)数据整合

·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;

·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;

·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。

  2)数据质量管控

·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;

·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。

  3)数据共享

·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;

·以实时或准实时的方式将整合或计算好的数据向外系统提供。

  4)数据应用

·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;

·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;

·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。

  四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。

您好,1)用户实用程序:

createdb 创建一个新的PostgreSQL的数据库(和SQL语句:CREATE DATABASE 相同)

createuser 创建一个新的PostgreSQL的用户(和SQL语句:CREATE USER 相同)

dropdb 删除数据库

dropuser 删除用户

pg_dump 将PostgreSQL数据库导出到一个脚本文件

pg_dumpall 将所有的PostgreSQL数据库导出到一个脚本文件

pg_restore 从一个由pg_dump或pg_dumpall程序导出的脚本文件中恢复PostgreSQL数据库

psql 一个基于命令行的PostgreSQL交互式客户端程序

vacuumdb 清理和分析一个PostgreSQL数据库,它是客户端程序psql环境下SQL语句VACUUM的shell脚本封装,二者功能完全相同

(2)系统实用程序

initdb 创建一个用于存储数据库的PostgreSQL数据目录,并创建预定义的模板数据库template0和template1,生成共享目录表 catalog;此程序通常只在安装PostgreSQL时运行一次

initlocation 创建一个辅助的PostgreSQL数据库存储区域

ipcclean 从停止的PostgreSQL服务器中清除共享内在和孤立信号标志

pg_ctl 启动、停止、重启PostgreSQL服务(比如:pg_ctl start 启动PostgreSQL服务,它和service postgresql start相同)

pg_controldata 显示PostgreSQL服务的内部控制信息

postgres PostgreSQL单用户模式的数据库服务

postmaster PostgreSQL多用户模式的数据库服务

4这里面最重要的是psql这个客户端程序最为重要。启用客户端程序psql的方法是:

切换到PostgreSQL预定义的数据库超级用户postgres,启用客户端程序psql,并连接到自己想要的数据库,比如说:

psql template1

出现以下界面,说明已经进入到想要的数据库,可以进行想要的 *** 作了。

template1=#

5在数据库中的一些命令:

template1=# \l 查看系统中现存的数据库

template1=# \q 退出客户端程序psql

template1=# \c 从一个数据库中转到另一个数据库中,如template1=# \c sales 从template1转到sales

template1=# \dt 查看表

template1=# \d 查看表结构

template1=# \di 查看索引

6要注意随时对数据库进行清理、收回磁盘空间并更新统计信息,使用下面的命令就搞定!

vaccumdb -d sales -z

-a 对所有的数据库 *** 作

-z 保证不断地删除失效的行,节约磁盘空间,将统计信息更新为最近的状态

7PostgreSQL用户认证

PostgreSQL数据目录中的pg_hbaconf的作用就是用户认证,可以在/var/lib/pgsql/data中找到。

有以下几个例子可以看看:

(1)允许在本机上的任何身份连接任何数据库

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD

local all all trust(无条件进行连接)

(2)允许IP地址为1921681x的任何主机与数据库sales连接

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD

host sales all 19216810 2552552550 ident sameuser(表明任何 *** 作系统用户都能够以同名数据库用户进行连接)

8看了那么多,来一个完整的创建PostgreSQL数据库用户的示例吧

(1)进入PostgreSQL高级用户

(2)启用客户端程序,并进入template1数据库

psql template1

(3)创建用户

template1=# CREATE USER hellen WITH ENCRYPED PASSWORD'zhenzhen'

(4)因为设置了密码,所以要编辑pg_hbaconf,使用户和配置文件同步。

在原有记录上面添加md5

local all hellen md5

(4)使用新用户登录数据库

template1=# \q

psql -U hellen -d template1

PS:在一个数据库中如果要切换用户,要使用如下命令:

template1=# \!psql -U tk -d template1

9设定用户特定的权限

还是要用例子来说明:

创建一个用户组:

sales=# CREATE GROUP sale;

添加几个用户进入该组

sales=# ALTER GROUP sale ADD USER sale1,sale2,sale3;

授予用户级sale针对表employee和products的SELECT权限

sales=# GRANT SELECT ON employee,products TO GROUP sale;

在sale中将用户user2删除

sales=# ALTER GROP sale DROP USER sale2;

10备份数据库

可以使用pg_dump和pg_dumpall来完成。比如备份sales数据库:

pg_dump sales>/home/tk/pgsql/backup/1bak

    在互联网公司做算法工程师,一般的工作流程是1hadoop跑数据做线下调研,2 调研结果出来后,跟线上效果做对比,3 线下调研结果OK 将模型上线。一般来讲,训练数据都具有时效性,模型需要常常更新才能在线上获得稳定的效果,于是在模型上线后搭建一个自动化更新模型的pipeline就变得非常重要了。

    pipeline的一般搭建流程如图一所示:

    

    首先是日志挖掘,从线上日志利用hadoop挖掘原始数据;其次是从原始数据中清洗并且提取特征(可能这里还需要对数据进行采样,变换数据分布);然后是重新自动训练一个新的模型,在测试集上自动评估后,以词典的方式上线。(深度学习的模型参数值保存为pb文件,可以通过上线词典的形式更新模型)。我将整体的pipeline 流程分为三段: 

        a数据集生成,hadoop 日志挖掘与清洗

        b模型生成,模型自动训练

        c词典上线,评估结果并自动上线

    在数据集生成阶段,其实可以分为三段: 1 日志挖掘原始数据;2 数据清洗与特征变换;3 数据抽样变换分布,用一个主shell处理数据集生成。

    1 在这里每一个子任务都应该由一个shell脚本处理,在每一个子任务里都应该打印重要的参数信息,例如输入和输出以及其他的重要参数,方便脚本出错debug调试。每一个子任务都可能有很多需要控制的参数,这些参数不应该分开写在每个shell里,应该写在主shell里统一控制。

    2 一个自动化的pipeline应该是全程自行的,不需要我们去管他。只有当遇到错误发生的时候需要提醒我们去处理。所以在每一个子shell里应当编写if语句 发送邮件通知。

            if [ $ -ne 0 ];then

                       echo "dst M/R Job  fails" | mail -s "check the hadoop shell"  邮箱名

                        exit 1

            fi

    3 有的数据清洗与特征变换任务可以在hadoop上直接完成,有的可能由于一些特征原因需要在本地完成,这点需要工程师自行决定怎么才是最优选择。

    4 对于数据抽样变换分布,我一般用蓄水池抽样,根据不同的分类,等概率抽取每个类别的样本数据

基于企业级传统数据仓库应用的特点和要求,以及Hadoop技术的原理和特点,在使用Hadoop大数据平台实现传统数仓应用的过程中,需要关注和解决的关键问题有很多,本文主要列举在以下几个核心问题和解决思路:模型和SQL支持、海量数据的存储和高效计算、高并发查询、事务支持。

1、模型和SQL支持

模型方面,原量收系统模型设计原则是基于中国邮政整体企业管理和业务管理的规则和流程,同时考虑到系统的扩展。为了便于理解,整个模型先按照数据仓库典型方式划分为接口贴源层、逻辑层和汇总层。接口贴源层按照接口来源各个系统进行划分,系统模型和源系统模型基本保持一致;逻辑层和汇总层则按照主题域进行划分。接口层模型与源业务系统基本一致,结构简单,关联度相对较低,大部分源业务系统使用Oracle数据库。基础层模型结构相对复杂,关联度相对较高,系统使用Teradata数据库,汇总层模型结构相对简单,关联度低,系统使用Teradata数据库。

中国邮政大数据平台选用的底层产品全面支持Oracle数据表模型,支持大部分的Teradata模型。但在实践过程中,从Teradata数据库向Hadoop平台进行模型迁移时,还是有许多特殊语法需要进行修订,下图为Teradata语法与Hadoop平台语法的对比和转换关系举例:

表3-1 Teradata语法与Hadoop平台语法的对比和转换关系举例

SQL方面,系统的报表查询和ETL加工采用了大量的复杂SQL。

中国邮政大数据平台选用的底层产品支持99%的ANSI SQL2003语法,也支持Oracle PL/SQL,包括完整的数据类型、流程控制、Package、游标、异常处理以及动态SQL执行,可以支持迁移大部分的语法和脚本。但在实践过程中,从Teradata数据库向Hadoop平台进行SQL迁移时,还是有许多特殊语法需要进行针对性改进,下表为Hadoop平台不支持的语法和问题举例:

表3-2 Hadoop平台不支持的语法和问题举例

上述问题需要在开发过程中进行针对性的产品更新或代码更新

2、海量数据的存储和高效计算

中国邮政大数据平台汇集了中国邮政各大业务系统的历史业务数据,需要经过T+1的数据处理得到分析和计算结果进行展示。因此需要对海量数据进行存储,并提供高效的数据计算。

中国邮政大数据平台的底层数据产品通过内存计算技术、高效索引、执行计划优化和高度容错的技术,能够处理从TB的数据,并且在数据量级上都能提供比现有技术更快的性能。

底层平台基于Spark的分析引擎,从下往上包含三层架构,底层是分布式内存列式存储,可建在内存或者SSD上,中间层是Spark计算引擎层,最上层包括一个完整的SQL99和PL/SQL编译器、统计算法库和机器学习算法库。因此可以分析存储在HDFS,HBase或者Holodesk分布式缓存中的数据,可以处理的数据量从GB到数十TB,即使数据源或者中间结果的大小远大于内存,也可高效处理。

同时,采用跨内存/闪存等介质的分布式混合列式存储,可用于缓存数据供Spark高速访问。小内存+SSD+磁盘的新方案可以提供跟大内存+磁盘的传统方案性能接近的交互式SQL分析能力。由于内存的价格是SSD的10倍,因此可以采用SSD来替代内存作为缓存,一方面可以增大分布式内存数据库Holodesk存储容量,另一方面可以降低成本,同时性能没有明显损失。

同时解决开源Spark在稳定性、可管理性和功能不够丰富上的问题。平台对Spark进行了大量的改进,极大提高了Spark功能和性能的稳定性。能稳定的运行724小时,并能在TB级规模数据上高效进行各种稳定的统计分析。

3、高并发查询

中国邮政大数据平台经过数据处理和汇总,为中国邮政各大业务板块各及机构提供数据报表和数据查询,用户数超过5万,并发数超过2千。因此需要解决高并查询的性能和效率问题。

中国邮政大数据平台的底层数据产品支持使用大表交互等一系列复杂的SQL分析语法 *** 作。同时支持多种索引,包括全局索引(Global Index)、局部索引(Local Index)、高维索引(High-dimensionalIndex)以及全文索引(Full-textIndex)等;支持通过SQL进行复杂条件毫秒级高并发查询。

主要通过使用索引来加快数据的查询速度。包括三种索引:本地索引、全局索引、全文索引,支持索引的自动创建(在创建表时指定索引),也支持对已有表创建索引。索引的基本设计思想是对表中的需要经常作为查询条件的列建立一个映射到主数据的索引。查询时可以利用索引特性进行快速定位并返回查询结果。实验证明,通过使用索引,用户查询的响应速度可以达到原来的20~100倍。同时支持全局、局部、高维索引和高级过滤器,,满足在线存储和在线业务分析系统(OLAP)的低延时需求,实现高并发低延时的OLAP查询。

以上就是关于hadoop是数据库技术吗全部的内容,包括:hadoop是数据库技术吗、如何使用Hadoop读写数据库、如何架构大数据系统hadoop等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9542330.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存