2、执行sql语句,接收返回值
3、关闭数据库连接
1、MySQL数据库要用MySQLdb模块,但Python用来链接MySQL的第三方库MySQLdb不支持Python3.x
特别说明:我在我的电脑上实验时,我的python是2.7.2版本,安装对应版本的MySQLdb之后直接可以运行,并与数据库连接成功,所以如果大家也像我一样顺利的话,下面的就不需要看了,直接跳过,看第2点如何执行sql语句即可!如果安装之后出现异常,可以参考一下下面的解决办法。
连接的关键是安装MySQLdb模块要下载与Python相对应的版本:
下载好后安装,它会自动检测到计算机Python的安装路径,并自动填写模块解压路径(我的是:D:\ProgramFiles\ActivePython 2.6.6.17\Lib\site-packages\)。
但解压完成后并不能使用,还要修改MySQLdb模块下的一些文件:
①.在MySQLdb目录下(我的是:D:\ProgramFiles\ActivePython 2.6.6.17\Lib\site-packages\MySQLdb)找到__init__.py:
注释第34、35行的from setsimport ImmutableSet、class DBAPISet(ImmutableSet):,在后面添加class DBAPISet(frozenset):
# from sets import ImmutableSet
# class DBAPISet(ImmutableSet):
class DBAPISet(frozenset):
②.打开converters.py:
注释第37行的from sets import BaseSet, Set,将第45行的return Set([ i for i in s.split(',') ifi ])中的Set改为set;同样将第129行的Set: Set2Str,中的Set改为set(不要修改Set2Str),到这里就修改完毕了
2.建立数据库连接
import MySQLdb
conn=MySQLdb.connect(host="localhost",user="root",passwd="sa",db="mytable")
比较常用的参数包括
host: 连接的数据库服务器主机名,默认为本地主机(localhost)。
user:数据库登陆名.默认是当前用户.
passwd:数据库登陆的秘密.默认为空.
db:要使用的数据库名.没有默认值.
port:MySQL服务使用的TCP端口.默认是3306.
conn连接有两个重要的方法commit【提交新增和修改】,rollback【撤销新增或修改】
3、执行数据库 *** 作
n=cursor.execute(sql,param)
我们要使用连接对象获得一个cursor对象,接下来,我们会使用cursor提供的方法来进行工作.
这些方法包括两大类:1.执行命令,2.接收返回值
cursor用来执行命令的方法:
callproc(self, procname, args):用来执行存储过程,接收的参数为存储过程名和参数列表,返回值为受影响的行数
execute(self, query, args):执行单条sql语句,接收的参数为sql语句本身和使用的参数列表,返回值为受影响的行数
executemany(self, query, args):执行单挑sql语句,但是重复执行参数列表里的参数,返回值为受影响的行数
nextset(self):移动到下一个结果集
cursor用来接收返回值的方法:
fetchall(self):接收全部的返回结果行.
fetchmany(self, size=None):接收size条返回结果行.如果size的值大于返回的结果行的数量,则会返回cursor.arraysize条数据.
fetchone(self):返回一条结果行.
scroll(self, value, mode='relative'):移动指针到某一行.如果mode='relative',则表示从当前所在行移动value条,如果mode='absolute',则表示从结果集的第一行移动value条.
下面的代码是一个完整的例子.
#使用sql语句,这里要接收的参数都用%s占位符.要注意的是,无论你要插入的数据是什么类型,占位符永远都要用%s
sql="insert into cdinfo values(%s,%s,%s,%s,%s)"
#param应该为tuple或者list
param=(title,singer,imgurl,url,alpha)
#执行,如果成功,n的值为1
n=cursor.execute(sql,param)
#再来执行一个查询的 *** 作
cursor.execute("select * from cdinfo")
#我们使用了fetchall这个方法.这样,cds里保存的将会是查询返回的全部结果.每条结果都是一个tuple类型的数据,这些tuple组成了一个tuple
cds=cursor.fetchall()
#因为是tuple,所以可以这样使用结果集
print cds[0][3]
#或者直接显示出来,看看结果集的真实样子
print cds
#如果需要批量的插入数据,就这样做
sql="insert into cdinfo values(0,%s,%s,%s,%s,%s)"
#每个值的集合为一个tuple,整个参数集组成一个tuple,或者list
param=((title,singer,imgurl,url,alpha),(title2,singer2,imgurl2,url2,alpha2))
#使用executemany方法来批量的插入数据.这真是一个很酷的方法!
n=cursor.executemany(sql,param)
需要注意的是(或者说是我感到奇怪的是),在执行完插入或删除或修改 *** 作后,需要调用一下conn.commit()方法进行提交.这样,数据才会真正保存在数据库中.我不清楚是否是我的mysql设置问题,总之,今天我在一开始使用的时候,如果不用commit,那数据就不会保留在数据库中,但是,数据确实在数据库呆过.因为自动编号进行了累积,而且返回的受影响的行数并不为0.
4、关闭数据库连接
需要分别的关闭指针对象和连接对象.他们有名字相同的方法
cursor.close()
conn.close()
5、
5 编码(防止乱码)
需要注意的点:
1 Python文件设置编码 utf-8 (文件前面加上 #encoding=utf-8)
2 MySQL数据库charset=utf-8
3 Python连接MySQL是加上参数 charset=utf8
4 设置Python的默认编码为 utf-8 (sys.setdefaultencoding(utf-8)
#encoding=utf-8
import sys
import MySQLdb
reload(sys)
sys.setdefaultencoding('utf-8')
db=MySQLdb.connect(user='root',charset='utf8')
注:MySQL的配置文件设置也必须配置成utf8
6.模块功能演示
#!/usr/bin/python
import MySQLdb
Con= MySQLdb.connect(host='localhost',user='root',passwd='root',db='abc')
cursor =con.cursor()
sql ="select * from myt"
cursor.execute(sql)
row=cursor.fetchone()
print row
cursor.close()
con.close()
执行以下SQL语句获取返回值:
//获取连接的游标
cursor=conn.cursor()
//查询
sql = "select * from 【table】"
//新增
sql = "insert into 【table】(字段,字段) values(值,值)"
//修改
sql = "update 【table】 set 字段 =‘值’where 条件 "
//删除
sql = "delete from 【table】where 条件"
cursor.execute(sql)
返回值
cur.execute('select * from tables')
其返回值为SQL语句得到的行数,如:2L,表示2行。
然后,可以从该对象的fetchone或fetchall方法得到行信息。
获取行信息
指针对象的fetchone()方法,是每次得到一行的tuple返回值:
引用
>>>row=cur.fetchone()
>>>print row
('user1', '52c69e3a57331081823331c4e69d3f2e', 1000L, 1000L, '/home/FTP/user1','')
指针对象的fetchall()方法,可取出指针结果集中的所有行,返回的结果集一个元组(tuples):
引用
>>>cur.scroll(0,'absolute')
>>>row=cur.fetchall()
>>>print row
(('user1', '52c69e3a57331081823331c4e69d3f2e', 1000L, 1000L, '/home/FTP/user1',''), ('user2', '7e58d63b60197ceb55a1c487989a3720', 1000L, 1000L,'/home/FTP/user2', None))
移动指针
当使用fetchone()方法是,指针是会发生移动的。所以,若不重置指针,那么使用fetchall的信息将只会包含指针后面的行内容。
手动移动指针使用:
cur.scroll(int,parm)
含义为:
引用
int:移动的行数,整数;在相对模式下,正数向下移动,负值表示向上移动。
parm:移动的模式,默认是relative,相对模式;可接受absoulte,绝对模式。
修改数据
修改数据,包括插入、更新、删除。它们都是使用指针对象的execute()方法执行:
cur.execute("insert into table (row1, row2) values ('111', '222')")
cur.execute("update table set row1 = 'test' where row2 = 'row2' ")
cur.execute("delete from table where row1 = 'row1' ")
因单引号“'”用于SQL语句中的标识,所以,python中的字符串需使用双引号括住。
此外,也可以使用python的“格式化字符串”写法,简化命令,例如:
cur.execute("update table set row1 = '%s' where row2 = '%s' "%('value1','value2'))
※请注意,'%s'的单引号是SQL语句的间隔符,'value1'的单引号是python的字符串间隔符,其含义是不同的。是否需要间隔符,以及使用双引号还是单引号作为间隔,需根据其含义决定。例如,还有:
cur.execute("update FTPUSERS set passwd=%s where userid='%s' "%("md5('123')",'user2'))
这里,paswd=%s是因SQL的md5()函数是不需要单引号间隔的;"md5('123')"是python的字符串中含有单引号,所以用双引号括住。
提交修改
一般情况下,MySQLdb模块会自动提交修改。但我们在更新数据后,手动运行一次:
conn.commit()
关闭数据库连接
需要分别的关闭指针对象和连接对象.他们有名字相同的方法
cursor.close()
conn.close()
属于混合编程的问题。较全面的介绍一下,不仅限于题主提出的问题。以下讨论中,Python指它的标准实现,即CPython(虽然不是很严格)
本文分4个部分
C/C++ 调用 Python (基础篇)— 仅讨论Python官方提供的实现方式
Python 调用 C/C++ (基础篇)— 仅讨论Python官方提供的实现方式
C/C++ 调用 Python (高级篇)— 使用 Cython
Python 调用 C/C++ (高级篇)— 使用 SWIG
练习本文中的例子,需要搭建Python扩展开发环境。具体细节见搭建Python扩展开发环境 - 蛇之魅惑 - 知乎专栏
1 C/C++ 调用 Python(基础篇)
Python 本身就是一个C库。你所看到的可执行体python只不过是个stub。真正的python实体在动态链接库里实现,在Windows平台上,这个文件位于 %SystemRoot%\System32\python27.dll。
你也可以在自己的程序中调用Python,看起来非常容易:
//my_python.c
#include <Python.h>
int main(int argc, char *argv[])
{
Py_SetProgramName(argv[0])
Py_Initialize()
PyRun_SimpleString("print 'Hello Python!'\n")
Py_Finalize()
return 0
}
在Windows平台下,打开Visual Studio命令提示符,编译命令为
cl my_python.c -IC:\Python27\include C:\Python27\libs\python27.lib
在Linux下编译命令为
gcc my_python.c -o my_python -I/usr/include/python2.7/ -lpython2.7
在Mac OS X 下的编译命令同上
产生可执行文件后,直接运行,结果为输出
Hello Python!
Python库函数PyRun_SimpleString可以执行字符串形式的Python代码。
虽然非常简单,但这段代码除了能用C语言动态生成一些Python代码之外,并没有什么用处。我们需要的是C语言的数据结构能够和Python交互。
下面举个例子,比如说,有一天我们用Python写了一个功能特别强大的函数:
def great_function(a):
return a + 1
接下来要把它包装成C语言的函数。我们期待的C语言的对应函数应该是这样的:
int great_function_from_python(int a) {
int res
// some magic
return res
}
首先,复用Python模块得做‘import’,这里也不例外。所以我们把great_function放到一个module里,比如说,这个module名字叫 great_module.py
接下来就要用C来调用Python了,完整的代码如下:
#include <Python.h>
int great_function_from_python(int a) {
int res
PyObject *pModule,*pFunc
PyObject *pArgs, *pValue
/* import */
pModule = PyImport_Import(PyString_FromString("great_module"))
/* great_module.great_function */
pFunc = PyObject_GetAttrString(pModule, "great_function")
/* build args */
pArgs = PyTuple_New(1)
PyTuple_SetItem(pArgs,0, PyInt_FromLong(a))
/* call */
pValue = PyObject_CallObject(pFunc, pArgs)
res = PyInt_AsLong(pValue)
return res
}
从上述代码可以窥见Python内部运行的方式:
所有Python元素,module、function、tuple、string等等,实际上都是PyObject。C语言里 *** 纵它们,一律使用PyObject *。
Python的类型与C语言类型可以相互转换。Python类型XXX转换为C语言类型YYY要使用PyXXX_AsYYY函数;C类型YYY转换为Python类型XXX要使用PyXXX_FromYYY函数。
也可以创建Python类型的变量,使用PyXXX_New可以创建类型为XXX的变量。
若a是Tuple,则a[i] = b对应于 PyTuple_SetItem(a,i,b),有理由相信还有一个函数PyTuple_GetItem完成取得某一项的值。
不仅Python语言很优雅,Python的库函数API也非常优雅。
现在我们得到了一个C语言的函数了,可以写一个main测试它
#include <Python.h>
int great_function_from_python(int a)
int main(int argc, char *argv[]) {
Py_Initialize()
printf("%d",great_function_from_python(2))
Py_Finalize()
}
编译的方式就用本节开头使用的方法。
在Linux/Mac OSX运行此示例之前,可能先需要设置环境变量:
bash:
export PYTHONPATH=.:$PYTHONPATH
csh:
setenv PYTHONPATH .:$PYTHONPATH
2 Python 调用 C/C++(基础篇)
这种做法称为Python扩展。
比如说,我们有一个功能强大的C函数:
int great_function(int a) {
return a + 1
}
期望在Python里这样使用:
>>>from great_module import great_function
>>>great_function(2)
3
考虑最简单的情况。我们把功能强大的函数放入C文件 great_module.c 中。
#include <Python.h>
int great_function(int a) {
return a + 1
}
static PyObject * _great_function(PyObject *self, PyObject *args)
{
int _a
int res
if (!PyArg_ParseTuple(args, "i", &_a))
return NULL
res = great_function(_a)
return PyLong_FromLong(res)
}
static PyMethodDef GreateModuleMethods[] = {
{
"great_function",
_great_function,
METH_VARARGS,
""
},
{NULL, NULL, 0, NULL}
}
PyMODINIT_FUNC initgreat_module(void) {
(void) Py_InitModule("great_module", GreateModuleMethods)
}
除了功能强大的函数great_function外,这个文件中还有以下部分:
包裹函数_great_function。它负责将Python的参数转化为C的参数(PyArg_ParseTuple),调用实际的great_function,并处理great_function的返回值,最终返回给Python环境。
导
出表GreateModuleMethods。它负责告诉Python这个模块里有哪些函数可以被Python调用。导出表的名字可以随便起,每一项有4
个参数:第一个参数是提供给Python环境的函数名称,第二个参数是_great_function,即包裹函数。第三个参数的含义是参数变长,第四个
参数是一个说明性的字符串。导出表总是以{NULL, NULL, 0, NULL}结束。
导出函数initgreat_module。这个的名字不是任取的,是你的module名称添加前缀init。导出函数中将模块名称与导出表进行连接。
在Windows下面,在Visual Studio命令提示符下编译这个文件的命令是
cl /LD great_module.c /o great_module.pyd -IC:\Python27\include C:\Python27\libs\python27.lib
/LD 即生成动态链接库。编译成功后在当前目录可以得到 great_module.pyd(实际上是dll)。这个pyd可以在Python环境下直接当作module使用。
在Linux下面,则用gcc编译:
gcc -fPIC -shared great_module.c -o great_module.so -I/usr/include/python2.7/ -lpython2.7
在当前目录下得到great_module.so,同理可以在Python中直接使用。
本部分参考资料
《Python源码剖析-深度探索动态语言核心技术》是系统介绍CPython实现以及运行原理的优秀教程。
Python 官方文档的这一章详细介绍了C/C++与Python的双向互动Extending and Embedding the Python Interpreter
关于编译环境,本文所述方法仅为出示原理所用。规范的方式如下:3. Building C and C++ Extensions with distutils
作为字典使用的官方参考文档 Python/C API Reference Manual
用以上的方法实现C/C++与Python的混合编程,需要对Python的内部实现有相当的了解。接下来介绍当前较为成熟的技术Cython和SWIG。
3 C/C++ 调用 Python(使用Cython)
在
前面的小节中谈到,Python的数据类型和C的数据类型貌似是有某种“一一对应”的关系的,此外,由于Python(确切的说是CPython)本身是
由C语言实现的,故Python数据类型之间的函数运算也必然与C语言有对应关系。那么,有没有可能“自动”的做替换,把Python代码直接变成C代码
呢?答案是肯定的,这就是Cython主要解决的问题。
安装Cython非常简单。Python 2.7.9以上的版本已经自带easy_install:
easy_install -U cython
在Windows环境下依然需要Visual
Studio,由于安装的过程需要编译Cython的源代码,故上述命令需要在Visual
Studio命令提示符下完成。一会儿使用Cython的时候,也需要在Visual
Studio命令提示符下进行 *** 作,这一点和第一部分的要求是一样的。
继续以例子说明:
#great_module.pyx
cdef public great_function(a,index):
return a[index]
这其中有非Python关键字cdef和public。这些关键字属于Cython。由于我们需要在C语言中使用
“编译好的Python代码”,所以得让great_function从外面变得可见,方法就是以“public”修饰。而cdef类似于Python的
def,只有使用cdef才可以使用Cython的关键字public。
这个函数中其他的部分与正常的Python代码是一样的。
接下来编译 great_module.pyx
cython great_module.pyx
得到great_module.h和great_module.c。打开great_module.h可以找到这样一句声明:
__PYX_EXTERN_C DL_IMPORT(PyObject) *great_function(PyObject *, PyObject *)
写一个main使用great_function。注意great_function并不规定a是何种类型,它的
功能只是提取a的第index的成员而已,故使用great_function的时候,a可以传入Python
String,也可以传入tuple之类的其他可迭代类型。仍然使用之前提到的类型转换函数PyXXX_FromYYY和PyXXX_AsYYY。
//main.c
#include <Python.h>
#include "great_module.h"
int main(int argc, char *argv[]) {
PyObject *tuple
Py_Initialize()
initgreat_module()
printf("%s\n",PyString_AsString(
great_function(
PyString_FromString("hello"),
PyInt_FromLong(1)
)
))
tuple = Py_BuildValue("(iis)", 1, 2, "three")
printf("%d\n",PyInt_AsLong(
great_function(
tuple,
PyInt_FromLong(1)
)
))
printf("%s\n",PyString_AsString(
great_function(
tuple,
PyInt_FromLong(2)
)
))
Py_Finalize()
}
编译命令和第一部分相同:
在Windows下编译命令为
cl main.c great_module.c -IC:\Python27\include C:\Python27\libs\python27.lib
在Linux下编译命令为
gcc main.c great_module.c -o main -I/usr/include/python2.7/ -lpython2.7
这个例子中我们使用了Python的动态类型特性。如果你想指定类型,可以利用Cython的静态类型关键字。例子如下:
#great_module.pyx
cdef public char great_function(const char * a,int index):
return a[index]
cython编译后得到的.h里,great_function的声明是这样的:
__PYX_EXTERN_C DL_IMPORT(char) great_function(char const *, int)
很开心对不对!
这样的话,我们的main函数已经几乎看不到Python的痕迹了:
//main.c
#include <Python.h>
#include "great_module.h"
int main(int argc, char *argv[]) {
Py_Initialize()
initgreat_module()
printf("%c",great_function("Hello",2))
Py_Finalize()
}
在这一部分的最后我们给一个看似实用的应用(仅限于Windows):
还是利用刚才的great_module.pyx,准备一个dllmain.c:
#include <Python.h>
#include <Windows.h>
#include "great_module.h"
extern __declspec(dllexport) int __stdcall _great_function(const char * a, int b) {
return great_function(a,b)
}
BOOL WINAPI DllMain(HINSTANCE hinstDLL,DWORD fdwReason,LPVOID lpReserved) {
switch( fdwReason ) {
case DLL_PROCESS_ATTACH:
Py_Initialize()
initgreat_module()
break
case DLL_PROCESS_DETACH:
Py_Finalize()
break
}
return TRUE
}
在Visual Studio命令提示符下编译:
cl /LD dllmain.c great_module.c -IC:\Python27\include C:\Python27\libs\python27.lib
会得到一个dllmain.dll。我们在Excel里面使用它,没错,传说中的Excel与Python混合编程:
参考资料:Cython的官方文档,质量非常高:
Welcome to Cython’s Documentation
4 Python调用C/C++(使用SWIG)
用
C/C++对脚本语言的功能扩展是非常常见的事情,Python也不例外。除了SWIG,市面上还有若干用于Python扩展的工具包,比较知名的还有
Boost.Python、SIP等,此外,Cython由于可以直接集成C/C++代码,并方便的生成Python模块,故也可以完成扩展Python
的任务。
答主在这里选用SWIG的一个重要原因是,它不仅可以用于Python,也可以用于其他语言。如今SWIG已经支持C/C++的
好基友Java,主流脚本语言Python、Perl、Ruby、PHP、JavaScript、tcl、Lua,还有Go、C#,以及R。SWIG是基
于配置的,也就是说,原则上一套配置改变不同的编译方法就能适用各种语言(当然,这是理想情况了……)
SWIG的安装方便,有Windows的预编译包,解压即用,绿色健康。主流Linux通常集成swig的包,也可以下载源代码自己编译,SWIG非常小巧,通常安装不会出什么问题。
用SWIG扩展Python,你需要有一个待扩展的C/C++库。这个库有可能是你自己写的,也有可能是某个项目提供的。这里举一个不浮夸的例子:希望在Python中用到SSE4指令集的CRC32指令。
首先打开指令集的文档:https://software.intel.com/en-us/node/514245
可以看到有6个函数。分析6个函数的原型,其参数和返回值都是简单的整数。于是书写SWIG的配置文件(为了简化起见,未包含2个64位函数):
/* File: mymodule.i */
%module mymodule
%{
#include "nmmintrin.h"
%}
int _mm_popcnt_u32(unsigned int v)
unsigned int _mm_crc32_u8 (unsigned int crc, unsigned char v)
unsigned int _mm_crc32_u16(unsigned int crc, unsigned short v)
unsigned int _mm_crc32_u32(unsigned int crc, unsigned int v)
接下来使用SWIG将这个配置文件编译为所谓Python Module Wrapper
swig -python mymodule.i
得到一个 mymodule_wrap.c和一个mymodule.py。把它编译为Python扩展:
Windows:
cl /LD mymodule_wrap.c /o _mymodule.pyd -IC:\Python27\include C:\Python27\libs\python27.lib
Linux:
gcc -fPIC -shared mymodule_wrap.c -o _mymodule.so -I/usr/include/python2.7/ -lpython2.7
注意输出文件名前面要加一个下划线。
现在可以立即在Python下使用这个module了:
>>>import mymodule
>>>mymodule._mm_popcnt_u32(10)
2
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)