二分类模型的评价指标
https://www.cnblogs.com/xiaoniu-666/p/10511694.html
参考tf的方法
predictions = tf.argmax(predict, 1)
actuals = tf.argmax(real, 1)
ones_like_actuals = tf.ones_like(actuals)
zeros_like_actuals = tf.zeros_like(actuals)
ones_like_predictions = tf.ones_like(predictions)
zeros_like_predictions = tf.zeros_like(predictions)
Lable: 1 1 0 0
predi: 1 0 0 1
Tp Fp Tn Fn
tp: = and 1
tn = ont(or) 1 lab-pred: 0 1 0 -1 lab-pred>=0.6: 0 1 0 0
fp = and(lable, lab-pred):
0 1 0 1 lab-pred<=-1.0: 0 0 0 1
not-lable: 0 0 1 1
fn = and(not-lable, lab-pred<-1.0)
可能用到的方法:
tf.less_equal
tf.less
tf.greater_equal
tf.greater
count_nonzero
参考:
https://blog.csdn.net/sinat_35821976/article/details/81334181
https://tensorflow.google.cn/api_docs/python/tf/math/count_nonzero
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)