Dimensional
Database,MDD)可以简单地理解为:将数据存放在一个n维数组中,而不是像关系数据库那样以记录的形式存放。因此它存在大量稀疏矩阵,人们可以通过多维视图来观察数据。多维数据库增加了一个时间维,与关系数据库相比,它的优势在于可以提高数据处理速度,加快反应时间,提高查询效率。
数据仓库,简称为DW(Data Warehouse的缩写),是一个很大的数据存储集合,通过对多样的业务数据进行筛选与整合,产出企业的分析性报告和各类报表,为企业的决策提供支持。数据仓库的输入方是各种各样的数据源,最终的输出用于企业的数据分析、数据挖掘、数据报表等方向。
多维数据库由一个基本维度(它表示没有应用任何读取端隐私策略的数据库)和许多用户维度(它们是数据库的转换副本)组成。
为了获得良好的查询性能,我们希望预先计算每个用户的Universe。如果我们天真地那样做,我们最终会有很多领域需要存储和维护,而存储需求本身将是令人望而却步的。
一个空间和计算效率高的多维数据库显然不能将所有用户维度全部实现,必须支持对用户维度的高性能增量更新。因此,它需要支持高性能更新的部分具体化视图。最近的研究提供了这个丢失的密钥原语。具体来说,可伸缩的并行流数据流计算系统现在支持部分有状态和动态变化的数据流。这些想法使得建立一个高效的多元维度数据库成为可能。
因此,我们将基础维度中的数据库表作为数据流的根顶点,并且随着基础维度的更新,记录将通过流移动到用户维度中。当数据流图中的边跨越通用边界时,将插入任何必要的数据流运算符以强制执行所需的隐私策略。所有适用的策略都应用于转换到给定用户群的每个边缘,因此无论数据通过哪个路径到达该边缘,我们都知道策略将被强制执行。
我们可以动态地构建数据流图,在第一次执行查询时为用户范围扩展流。通过在两个维度之间共享计算和缓存数据,可以减少基本更新所需的计算量。将其实现为一个联合的部分状态数据流是安全地执行此 *** 作的关键。
通过将所有用户的查询作为一个联合数据流进行推理,系统可以检测到这样的共享:当存在相同的数据流路径时,它们可以合并。
逻辑上不同但功能上等价的数据流顶点也可以共享一个公共的后备存储。在给定的维度中,任何到达这样一个顶点的记录都意味着维度可以访问它,因此系统可以安全地公开共享副本。
sql2014找不到任何多维数据库,可以重新安装SQL的补丁来解决这个问题。根据查询相关公开资料得知,SQLServer系列软件是Microsoft公司推出的关系型数据库管理系统。2014年4月16日于旧金山召开的一场发布会上,微软CEO萨蒂亚·纳德拉宣布正式推出SQLServer2014。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)