ANSYS中的位移分析是一种力学分析,用于评估物体的变形、挠度和应力情况。此分析可以根据边界条件以及应用的外力来预测连接部件和夹具之间的位移、变形和挠度,能为工程师的设计创造出更好的性能。
首先说一句ANSYS软件在使用上跟系统没有多大关系,不管是xp,win7,linux还是别的。
要看查看结果,必须有结果文件已导入ansys数据库中,也就是ansys工作目录里在计算后生成的一个rst后缀名的文件(结构分析)。如果是刚计算完成,那样就没必要导入直接就可以在后处理中查看结果,如果是计算完关闭ansys后,再查看结果就可以导入rst文件,方法如下:General
Post->Data
&
Files
Opts,再在打开的对话框中点“…”,找到结果文件,打开。就可以跟前面一样查看结果了。
在Ansys单元库中,有近200种单元类型,在本章中将讨论一些在桥梁
工程中常用到的单元,包括一些单元的输人参数,如单元名称、节点、自由
度、实常数、材料特性、表面荷载、体荷载、专用特性、关键选项KEYOPl等。
*** 关于单元选择问题
这是一个大问题,方方面面很多,主要是掌握有限元的理论知识。首先
当然是由问题类型选择不同单元,二维还是三维,梁,板壳,体,细梁,粗梁,
薄壳,厚壳,膜等等,再定义你的材料:各向同性或各向异性,混凝土的各项’
参数,粘d性等等。接下来是单元的划分与网格、精度与求解时间的要求等
选择,要对各种单元的专有特性有个大概了解。
使用Ansys,还要了解Ansys的一个特点是笼统与通用,因此很多东西
被掩盖到背后去了。比如单元类型,在Solid里面看到十几种选择,Solid45,
Solidl85,Solid95等,看来区别只是节点数目上。但是实际上每种类型里还
有Keyopt分成多种类型,比如最常用的线性单元Solid45,其Keyopt(1):in●
cludeorexclude extradisplacement shapes,就分为非协调元和协调元,Keyopt
(2):fullintegration。rreducedintegration其实又是两种不同的单元,这样不同
组合一下这个Solid45实际上是包含了6种不同单元,各有各的不同特点和
用处。因此使用Ansys要注意各单元的Keyopt选项。不同的选项会产生不
同的结果。 ·
举例来说:对线性元例如Solid45,要想把弯曲问题计算得比较精确,必
须要采用非协调模式。采用完全积分会产生剪切锁死,减缩积分又会产生
零能模式(ZEM),非协调的线性元可以达到很高的精度,并且计算量比高阶
刷、很多,在变形较大时,用Enhanced Strain比非协调位移模式(Enhaced
Displacement)更好(Solidl85)。但是这些非协调元都要求网格比较规则才
行,网格不规则的话,精度会大大下降,所以如何划分网格也是一门实践性
很强的学问。
采用高阶单元是提高精度的好办法,拿不定主意时采用高阶元是个比
较保险的选择,但是高阶单元在某些情况下也会出现剪切锁死,并且很难发
现,因此用减缩积分的高阶元通常是最保险的选择,但是在大位移时,网格
扭曲较大,减缩积分就不适用。
不同结构形式的桥梁具有不同的力学行为,必须针对性地创建其模型, ’
选择维数最低的单元去获得预期的效果(尽量做到能选择点而不选择线,能
选择线而不选择平面,能选择平面而不选择壳,能选择壳而不选择三维实
体)。下面的几节介绍一下桥梁工程计算中经常会用到的单元。
*** 桥梁仿真单元类型
一、建议选用的单元类型
在桥梁用Ansys建立模型时,可参照以下建议用的单元进行桥梁模型
的建立。
. 1.梁(配筋)单元:桥墩、箱梁、纵横梁。
2.板壳(配筋)单元:桥面系统。
3.实体(配筋)单元:桥墩系统、基础结构。
4.拉杆单元:拱桥的系杆、吊杆。
5.拉索单元:斜拉桥的索、悬索桥的钢丝绳。
6.预紧单元:索力控制、螺栓铆钉连接。
7.连接单元:支座、地基。
二、常见桥梁连接部位
在桥梁建立模型时要准确模拟边界条件,因此要准确分析连接部位的
固有特性。
(一)常见桥梁连接部位
1.固定支座、铰支、可滑移支座等空间支座系统。
2.带减振和隔振措施的减振支座系统。
3.地基—主体之间桩-基系统。
4.刚构之间的螺栓连接、铆接等。
5.梁管之间的球接和铰接等。
(二)连接部分解决方法
Ansys在解决桥梁不同的连接部位时可选用如下的方法:
1.Combin7、Combin40、Linkll、Contact52、Combine38d簧(阻尼、间隙
元):可用来模拟支座、绳索、拉杆等桥梁部件。
2.预紧单元可解决螺栓、铆钉连接的问题。 ,
3.二力杆拉杆、索可解决拉索问题。
4.耦合与约束方程可解决梁与塔横梁的边界约束关系。
5.接触单元如Contact52可模拟滑动支座、销接等部件的真实情
况。
(三)常见桥梁接触问题
桥梁各个部分之间可能存在如下三种接触方式。
1.滑移连接:点点接触。
2.绑定连接:点面接触。
3.转动连接:面面接触。
用接触单元可模拟如:滑移支座接触、挡块与其他部件的接触、振动时
不同构件的碰撞等问题,这里不再一一赘述。 .
三、桥梁基础的处理方式
为了真实的模拟桥梁的实际情况,需要真实模拟桥梁的基础受力、变形
及约束情况,建议建立模型时采用如下方案。
1.基础平台与桩基:用实体模型、预应力配筋。 ’
2.基础与岩土系统:有限区域实体模型、预应力配筋。
*** 桥梁常见模型处理
一、桥梁中常用的模型可以用相应的单元
1.刚构桥、拱桥:梁与杆单元组合模型。
2.钢管混凝土:复合截面梁模型。
3.连续梁:梁模型。
4.斜拉桥/悬索桥:梁、板壳、索或杆单元组合模型。
5,立交桥:实体墩、板壳桥面和加强梁混合模型。
6.局部详细计算:实体(考虑配筋)或板模型,以便考虑模型细节特征,
如结构尺寸构造倒角、厚薄或粗细过度、凹凸部分以及配筋等。
二、桥梁建模要综合运用各种合适的单元
对桥梁进行总体分析应该遵循如下原则:
1.支座系统采用d簧—阻尼系统; ·
·2.连接部位采用耦合与约束方程;
3.桥墩系统采用截面梁、配筋梁;
4.桥面系统采用截面梁、配筋梁、板壳、梁板组合。
对桥梁进行局部分析应该遵循如下原则:
1.支座系统采用实体模型:粘d(粘塑、超d、塑性)大变形(位移);
2.连接部位采用接触模型:实体、板壳、梁或组合模型;
3.桥墩系统采用实体模型:配筋与混凝土破坏;
4.桥面系统采用实体或板壳:配筋与混凝土破坏,组合梁之间的耦合
与约束方程。
三、选用合适的分析方法 、
在对桥梁进行建模计算时对不同的计算目的要采取不同的计算步骤。
(一)静态计算
1.根据分析类型承载特点建立合理梁、板、实体、拉杆(模拟索)模型;
2.材料与几何非线性效应;
3.连接部位与支座的正确处理。
(二)动力分析
1.尽量采用梁、板壳或二者组合模型;
2.附属结构简化为质点,建立与总体结构耦合关系;
3.连接部位与支座自由度协调合理;
4.应当考虑大变形、初应力以及预张力的动力影响;
5.必须正确考虑阻尼效应;
6.材料与几何非线性效应。
施加预应力的方式
一、预应力的模拟方式
Ansys里加预应力有几种方式:
1.直接在单元中加,(Linkl0等单元可以通过Real实常数来加)。
2.用F加力,然后在分析时打开Prestl~ss,加。
3.用温度变化模拟。
在常用的软件系统中,预应力混凝土分析根据作用不妨分为两类:分离
式和整体式。所谓分离式就是将混凝土和力筋的作用分别考虑(脱离体),
以荷载的形式取代预应力钢筋的作用,典型.的如等效荷载法;而整体式则是
将二者的作用一起考虑,典型的如Ansys中用Link单元模拟力筋的方法。
(一)线性或非线性的考虑
对于预应力混凝土结构,只要是开裂前阶段的应力分析,完全可以将混
凝土视为d性材料,当然钢筋也是d性材料,这主要在使用荷载阶段的应力
分析。假如要进行开裂和极限分析,则必须考虑二者的非线性特性。
(二)分离式方法(等效荷载法)的特点
主要优点是建模简单,不必考虑力筋的位置而可直接建模,当然网格划
分也简单,对结构在预应力作用下的整体效应可比较快捷地掌握。
其缺点是比较明显的:
①不便模拟细部,例如力筋所在位置对结构的影响显然是不同的,假如
一定要模拟,则荷载必须施加在力筋的位置上,故其建模的方便性就消失
了; ‘
②等效荷载法没有考虑力筋对混凝土的作用分布和方向,力筋对混凝
土作用显然在各处是不同的,而等效荷载法则没有计及此点;
③对张拉过程无法模拟; ,
④在其他外荷载作用下的共同作用不便考虑,否则要加入力筋(其建模
则同整体式),不能确定力筋在外荷载作用下的应力增量;
⑤可以模拟应力损失的影响。
但是对于只关注预应力混凝土结构的基本性能时,可以考虑采用等效
荷载法。 ’
(三)整体式方法的特点
将混凝土和力筋划分为不同的单元‘逛考虑,而模拟预应力可以采用
降温方法和初应变方法。降温方法比较简单,同时可以模拟力筋的损失,单
元和实常数几种即可;而采用初应变又要模拟力筋各处不同的应力时,每个
单元的实常数各不相等,工作量较大。所以比较而言,采用整体式时考虑降
温方法为宜。
主要缺点是建模不便,尤其是当力筋较多且曲线布筋时(可以采用
APDL解决);其优点也比较明显:
①力筋的具体位置一定,对结构的影响可全面的考虑;
②力筋对混凝土的作用近似的得到考虑(在结点处);
③可以模拟张拉不同的力筋,以优化张拉顺序;
④不管何种荷载,都是力筋和混凝土共同承担的,可以得到力筋在任何
荷载下的应力;
⑤可以模拟应力损失的影响。
但在后张法中有几个问题是应该考虑的(当然可以不予理睬):
①力筋的滑动问题。在张拉过程中,力筋与混凝土之间没有粘结,存
在接触和滑动,而张拉完毕后,一般又都建立了粘结。这个问题可以这样
考虑,因为分析总是张拉完毕(哪怕是某一束),这时显然没有滑动问题
了,即可以按有粘结处理;而在荷载作用下有了粘结,自然可以按有粘结
处理。
②在张拉完毕后力筋的应力是已知的,在分析时输入降温也是按张拉
应力反算的,计算后力筋的应力显然不等于张拉应力。这里有d性压缩的
问题,即降温应该计人混凝土d性压缩损失,你可以考虑增大一定的比例,
然后降温计算,二者相符或差别合适时认可。综上,类似计算分析,建议采
用整体式之降温模拟方法。
二、建立预应力的模型
在模拟预应力钢筋时,传统的方式是把预应力钢筋作为体积的边界,把
混凝土体积分割开来,Glue后划分混凝土单元,边界就作为Link或Beam单
元了。普通钢筋可以用Solid65的分布钢筋模拟,其实常数数据很简单。
Solid65单元模拟精度很高,只要各材料参数取的正确就可以十分好地
模拟混凝土构件加载到变形开裂破坏的全过程,与实验数据十分接近。但
是要注意混凝土的取值,d性模量抗压强度不能取规范
值,要用实验公式。
在模拟钢筋混凝土的时候,一般的建模做法是:先建立体,然后使用面
去切割体,把体切割成几个部分,在各个部分之间有共用的边界线,把这些
边界线定义成Link单元,这样就在体单元内建立于Link单元。因为Link单
元就在Solid体单元的边界线上,这样在网格划分的时候两种单元会产生共
同的节点,也就可以共同工作了。
土和砼的模拟
*** 土d簧的模拟
Linkl0相当于用杆件提供约束,只不过此类单元可以设为只能受拉或只
能受压。如果混凝土与节点底板分离,单元将不起作用,否则Hnkl0单元要
承受拉力。如果用Linkl0的话,你可以把不与结构相联接的一端所有自由度
都约束,与结构连接二端是否约束则看结构的具体情况,与Linkl0无关。
Linkl0单元只能提供轴向位移的约束,不可抗剪。刚度可以这样算,KxA/L,
不与结构连接的节点可取沿约束方向上的任意位置。两节点确定后,A
是定的。你只要保证K的值没错,愿意怎样组合都行。
至于特定问题,可以定义两种Linkl0单元,第一种只能受拉,第二种只
能受压。当然ElementTypeNumber(单元类型指代号码)是不同的。如果你
担心自己两种容易搞错,可以只定义一种Linkl0单元,把第二种的节点取
约束的反方向即可。 。
*** 混凝土的模拟
Ansys的Soiid65单元是专为混凝土、岩石等抗压能力远大于抗拉能力
的非均匀材料开发的单元。它可以模拟混凝土中的加强钢筋,以及材料的
拉裂和压溃现象。
钢筋混凝土有限元有三种基本模型:分离式、组合式和整体式。Solid65
单元采用Q6是整体式有限元模型,即将钢筋弥散于整个单元中,将加筋混凝
土视为连续均匀材料,求出的是一个统一的刚度矩阵。
Solid65单元中的钢筋采用实常数的方法进行添加,钢筋的尺寸由混凝
土的体积比确定。可以得到三种钢筋,这三种钢筋可以具有不同的材料,不
同的方向。 .
从抗剪的角度出发,箍筋在截面的位置可以是任意的,因此这种方法对
于钢筋混凝土中均匀分布的箍筋的设置比较适合。但与纵筋的实际情况却
有一定的距离,下面这两种方法可以更好地模拟纵筋的受力情况:
(1)将纵筋密集的区域设置为不同的体,使用带筋的Solid65单元,而无
纵筋区则设置为无筋65单元,这样就可以将钢筋区域缩小,接近真实的工
程情况。
(2)采用杆单元来模拟纵筋,即采用分离式的有限元模型。为了建模方
便,可将实体分为几个部分,使其交线为纵筋位置,这样就可以对交线划分
籽单元。此时,还可以对杆施加预应力来模拟预应力混凝土。
工况组合
荷载工况组合是荷载工况之间的运算,典型情况为当前在数据库中的
荷载工况和在另外一结果文件中的荷载工况间的运算,运算结果将改写数
据库中的结果数据部分,可以显示及列出荷载工况组合。
一、典型的荷载工况步骤
组合包括以下几步:
1.用kcdef命令定义荷载工况,kcdef,Lcno,Lstep,Sbstep,Kimg
2.用I_case命令将荷载工况一读人数据库Lease,Lcno
3.用Lcoper命令执行所需的运算Looper,Oper,Lcasel,Oper2,Lcase2
下面举例说明一下工况的具体应用。
假设结果文件包括针对几个荷载步的结果,若想比较荷载步5和荷载
步7,并将最大值存人内存,做法如下:
l_cdef,1,5将荷载工况1指向荷载步5
kcdef,2,7将荷载工况2指向荷载步7
Lease,1将荷载工况1读人内存
I_cover,Max,2与荷载工况2比较数据库并将最大值存人内存。
Lcwrite,12写当前荷载工况到文件Jobname.L12
Lcae,3将荷载工况3读人内存
I_coper,Add,12在Jobname.L12文件中将数据库追加到荷载工况中
二、存储组合后的荷载工况
缺省情况下,荷载工况组合的结果存在内存中,并覆盖数据库中的结果
部分。要保存这些结果,作为以后浏览或以后的荷载工况组合,用下列方法
之一:
1.将数据写到荷载工况文件中。
2.将数据追加到结果文件中用kcwrite,Lcno,Fname,Ext,Dir命令把当
前内存中的荷载工况写到荷载工况文件中。
用kcwrite命令把当前内存中的荷载工况写到荷载工况文件中。文件
名为Jobname.Lnn。这里皿为分配的荷载工况号。在后续的荷载工况组合
中皿指的是存人荷载工况文件的荷载工况。例如有这样的问题:工况1是
自重,工况2是集中荷载F,工况3二1.5倍的工况1+1.1倍的工况2,这个
工况3如何定义
可通过荷载步定义。在NO.3STEP定义1.5倍的工况1;NO.4STEP定
义1.1倍的工况2;NO.5SETP定义NO.3+NO.4+…,其中1.1和1.5的系
数可在荷载步中的选项中定义。也可对每种荷载分别定义为一种loadcase,
然后在通用后处理器/postl中进行组合。
风荷载的确定
首先要确定场地的风特性、平均风速、谱特性等,将紊流风速分解为定
常平均风分量和相应的紊动分量U+u(‘)。
平均风速可由地表条件根据对数律得出。“(c)就是要模拟的紊流风
速序列。有了其谱特性,可以生成大气边界层紊流的人工风速序列,这是做
结构风振计算的重要步骤。目前的随机序列拟合法有基于FOURIER分析
的波叠加法和时间序列理论的ARMA模型法,都是生成具有目标风速谱的
高斯平稳序列。有实测得来的风速序列最好,但通常是用模拟的风速序列
作为输入。模拟出的人工紊流序列要尽可能地符合实际大气边界层紊流特
性,才能保证计算结果的合理性。目前为止都是以紊流目标谱或相关作为
拟合目标,对多点则是相关矩阵或互谱矩阵。作随机响应分析PSD是很好
的办法,基于大量实测资料而统计出的谱本身就是作随机响应分析的很好
输入,比单纯的一条序列更有代表性。但由于随机计算难以考虑非线性,故
生成具体的随机序列作为输入,用有限元法计算动力响应是更普遍的方法。
常用于结构设计的谱公式有:Davenport谱,Kaimal谱,Karman谱等。谱拟合
:不仅在风工程中有应用,在人工地震波和人工海浪波生成中也有应用。相
应方法与风序列的生成大同小异。
地震波的输入
对于地震波的输入,可以把荷载记录做成文件,利用Apdl的读取功能读
人数据库中。下面的例子是自己编的一个小文件,修改一下可以更简洁。
’ 地震波时程记录分成了3个文件,每个文件是一列,分别记录z、y、z
·方向的加速度。这样就可以把加速度记录读取到Ansys数据库中作为数
组。也可以把加速度记录做成一个文件,这样程序就简单多了。下面是计
算部分语句:
/Solu !进入求解模块
Antype,Trans !求解类型为瞬态
Tm—Start=0.01 1开始时间
Tm—End=15.001 1结束时间
Tm—Incr=0.01 1时间步长
Do,TM,TM Start,TM End,TM lncr !循环
Time,005 !指定时间
alpha, !指定质量矩际系数
iBetad, !指定刚度矩际系数
Aeel,Acex(),Acey(),Acez() !指定力p速度大小
Solve !求解
Enddo !结束循环
exit !退出求解模块
初应力荷载
在作桥梁设计时,为了验证结构的可靠度,往往需要对结构施加初应力
荷载。在进行结构分析时,Ansys中可以使用输入文件来把初应力指定为一
种荷载。初应力荷载只许用于静态和完全瞬态分析中(分析可以是线性或非线性的)。初应力只能在分析的第一个荷载步中施加,用[stile命令来指
定、列表和删除初应力。该命令只能用于/Solution处理器中。
Isfile命令的loc变元用于指定这些初应力的位置。初应力可指定在单
元的中心或单元积分点处,koc的缺省值0对应于单元中心,koc:1对应于
单元积分点。对于网格中的每个个别单元,也可以通过Loc=2来指定不同
的初应力位置。在这种情况下,每个单元的初应力位置将用个别单元的局
部位置标志记录在初应力文件中。如二3指定网格中的每一个单兀的初
应力状态都是相同的。对于这种情况,对所有单元只需指定一个应力张量。
只有单元类型Plane2、Plane42、Solid45、Plane82、Solid92、Solid95、SheHl81、
Planel82、Planel83、Solidl85、Solidl86、Solidl87,Beaml88和Beaml89支持初应
力输入功能。Beam单元和Shdl单元的初应力必须在所有域段的积分点处
指定。
要使用[stile命令,初应力必须列在一个外部ASCII文件中,初应力文
件中的注释用“!”标记在注释行的第一个字符处指定。每个单元记录的第
一行应该由字符串"ELS"开头,后面跟单元号和任意的局部位置标志,这些
项必须用逗号隔开。如果[stile命令的变元koc的值为0、1或3,则局部位
置标志将被忽略。如果koc二2,则必须对每一个单元指定局部位置标志。
局部位置标志必须是下面的一个值:对于单元中心(缺省)为0,对于积分点
为1。任何的其他值都会产生错误并使得Isfile命令被忽略。
每个单元记录的第一行后面紧跟的一行指定单元的每一个应力点的单
元应力记录。当Loc:0时,只需指定每个单元中心处的一个应力记录,当
如=1时,每个单元的应力记录的数目等于单元积分点的数目。Ansys要求
每个应力记录中有6个应力张量分量,当Loc:3时,初应力文件中的第一
个单元的应力记录将被用于指定所有单元的相同的初应力。如果对一个单
元定义了单元坐标系(Esys),则初应力必须在这个坐标系中指定。
如何实现铰接
Ansys可采用两种方法来实现铰接:
1.在同一位置用2个Node,然后CP。
2.只用一个Node,然后根据需要用一些可以释放某些自由度的单元,
如Beam44(Beanl44可以定义成PIN-PIN,PIN-FIX.....)
et,22,beam44,,,,,,1
keyopt,X,7,11 ! beamelementpin-fix(1端铰结J端固结)
et,23,beam44,,,,,,1
keyopt,23,8,11 ! beamelementfix-pin(J端铰结,I端固结)
keyopt,24,7,11 ! beamelementpin-pin(1端铰结,J端固结)
下面举例说明铰接的应用。如上图所示为一中间铰接的结构,两端固结,均布荷载,作出弯矩图。命令流如下:
/prep7 !进入前处理
et,1,beam44 !定义混凝土单元类型
et,2,beam44 !定义钢筋单元类型
et,3,beam44 !定义混凝土d性模量
keyopt,1,8,11 !第一种单元的J节点X、Y方向转动放松
keyopt,2,7,11 !第一种单元的I节点X、Y方向转动放松
mp,dens,1,2600 !单元一的质量密度
mp,ex,1,3e7 !单元一的d性模量
r,1,3,4,5,1,1,0 !单元一的实常数
k,1, !定义关键点
k,2,10
k,3,10,8
k,4,5,5
1,1,2 !通过关键点连接成直线
1,2,3 ,
ldiv,1,,,10, !将直线1等分为10份
ldiv,2,,,8, !将直线2等分为10份
lsel,s,,,11 !选择直线11
LATF,1,1,1,,4 !赋予直线相关的特性
lsel,s,,,2 !选择直线2
LATF,1,1,2,,4 !赋予直线相关的特性
lsel,s,,,3,10,1 !选择直线3到10
lsel,a,,,1 !添加直线1
lsd,a,,,12,18,1 !添加直线12到18
LATY,1,1,3,,4 !赋予直线相关的特性
allsel !全选
lmesh,dl !划分所有直线
d,1,dl !约束节点
d,104,dl
esel,s,,,10,30,1 !选择单元10到30
sfbeam,all,1,pres,le2 !施加均布荷载
allsel
esel,s,,,35,50,1 !选择单元35到50
sfbeam,all,1,pres,2e2 !施加均布荷载
allsel
/solu !进入求解模块
solve !求解
/POSTl !进入后处理
etable,m,smisc,5 !建立弯矩单元表
plls,m,m !绘制弯矩图,如下图4所示
AUTOCAD模型输入
可以充分利用AutoCAD强大的绘图功能,在AutoCAD中建立模型后,再输
入Ansys中进行计算。AutoCAD建立的模型可以通过以下两种方法传人Ansys。
1.对于三维实体(3d object)
AutoCAD:File->Export...—>保存类型选ACIS(x.sat)->输入文
件名-·选实体(选3d object)
Ansys:File—>Import->Sat...输入即可
优点:用Sat文件转换方便,而且一般不会有转换问题.
缺点:只能转换三维实体或面域
2.用Iges格式文件交换
AutoCADl2自带输出Iges格式文件工具,其他可通过Algor软件将Dxf
格式的模型转换为Iges的格式文件然后再转入Ansys:File—>Import-->
iges…输入即可
优点:各种实体类型都能转换
ANSYS 90是第一个除结构分析能力外,又具备电磁分析能力、以及业界领先的CFD及网格划分技术(CFX和ICEM CFD)的ANSYS软件版本。并且,Workbench 90还丰富了材料库,兑现了ANSYS公司对客户的承诺,也就是,针对市场提供集成化、模块化、可扩展的工程仿真解决方案。
作为ANSYS CFX最新和最为强大的版本, CFX 57可在Workbench的界面下,在统一的环境中轻松完成整个CFD仿真流程。就如同一件精美的艺术品,用户可以通过它来完成CAD的数据读取、几何处理、网格划分、物理环境设置、求解控制以及后处理,而不再需要在完全不同的产品中切换和处理数据库文件。这标志着ANSYS在各类技术整合方面又迈出了坚实的一步,那就是将CFD和 Workbench中的多物理求解器及各类CAE工具深入整合在一起。同时,强大的ICEM CFD网格处理工具也被集成到Workbench,满足高质量的多体六面体网格划分及复杂装配需求。
另外,“Workbench advanced meshing”工具提供了对许多求解软件的支持,可以读入并输出各种求解器识别的文件格式。无论对于CFD用户还是结构分析用户,网格处理全过程的易用性有了飞跃。CAE用户将从更先进的前/后处理以及以往模型的数据协同方面获益匪浅。而对于CFD用户,更好的混合建模功能,如纯六面体,六面体为主,四面体/金字塔单元混合以及局部重新划分体网格的功能,确保了网格的高质量。这是Workbench集成新一代网格划分工具的分水岭。
Workbench 90另一大特色是提供了工业界最易用的电磁仿真功能,即静磁建模和分析,满足了旋转电机、电磁线圈以及磁铁的设计和制动器市场的仿真需求。该版本提供了独具特色的CAD双向参数互动功能、分析向导、方便易用的空气外场网格划分工具、复杂电机线圈绕阻的设置功能,以及实心导体和螺旋管导体的直接建模功能。除了出色的云图和矢量图可视化外,此软件还可以自动计算力、扭矩、感应系数和线圈的磁通量泄漏。
致力于提高Simulation的高级非线性分析能力,ANSYS 90着重增强了3-D和2-D的多载荷步分析。用户可以通过一个非常直接的,方便的界面完成多载荷步加载、求解以及后处理。此外,增强功能还包括梁应力工具、ANSYS APDL的自定义命令行、接触建模,以及用于提高用户仿真效率的其他工具。`
ANSYS Workbench 90界面在材料数据库方面有显著的提高。“Engineering Data”文件夹提供了Workbench中所有模块需要的材料数据,并提供了方便的功能访问这些材料库。这些材料数据包括结构和热相关性能、电磁特性(包括B-H曲线)、对流数据,另外参数化的表格式数据可用于DesignXplorer产品。
90版本的Workbench软件开发包(SDK)功能也有非凡的提升,允许用户或是合作伙伴可以轻松的将自己的应用软件与ANSYS技术合二为一。同样,用户也可以为所感兴趣的产品和分析仿真研究创建自动化的流程。
以上就是关于ansys里面的位移分析是啥全部的内容,包括:ansys里面的位移分析是啥、ANSYS 12.0无法查看求解结果。我电脑系统是WIN7的。、ansys 热应力 温度应力等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)