如何提高数据库访问效率

如何提高数据库访问效率,第1张

查询速度慢的原因很多,常见如下几种:

1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)

2、I/O吞吐量小,形成了瓶颈效应。

3、没有创建计算列导致查询不优化。

4、内存不足

5、网络速度慢

6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)

7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)

8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。

9、返回了不必要的行和列

10、查询语句不好,没有优化

可以通过如下方法来优化查询 :

1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要.

2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)

3、升级硬件

4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段

5、提高网速

6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。如果另外安装了全文检索功能,并打算运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。

7、增加服务器CPU个数但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新 *** 作UPDATE,INSERT,DELETE还不能并行处理。

8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。

9、DB Server 和APPLication Server 分离;OLTP和OLAP分离

10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件'分区视图')

a、在实现分区视图之前,必须先水平分区表

b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统 *** 作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。

11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE. 设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。 在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:

1、 查询语句的词法、语法检查

2、 将语句提交给DBMS的查询优化器

3、 优化器做代数优化和存取路径的优化

4、 由预编译模块生成查询规划

5、 然后在合适的时间提交给系统处理执行

6、 最后将执行结果返回给用户其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。

12、Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物. 没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) commit trans 或者将动态SQL 写成函数或者存储过程。

13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。

14、SQL的注释申明对执行没有任何影响

15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。游标可以按照它所支持的提取选项进行分类: 只进 必须按照从第一行到最后一行的顺序提取行。FETCH NEXT 是唯一允许的提取 *** 作,也是默认方式。可滚动性 可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。有四个并发选项 READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。 OPTIMISTIC WITH valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。 选择这个并发选项�OPTIMISTIC WITH ROW VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有所更改。在 SQL Server 中,这个性能由 timestamp 数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有 timestamp 列的行时,SQL Server 先在时间戳列中存储当前的 @@DBTS 值,然后增加 @@DBTS 的值。如果某 个表具有 timestamp 列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需比较 timestamp 列即可。如果应用程序对没有 timestamp 列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。 SCROLL LOCKS 这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 SELECT 语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚 *** 作之后。如果提交时关闭游标的选项为关,则 COMMIT 语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标 SELECT 语句中的锁提示。锁提示 只读 乐观数值 乐观行版本控制 锁定无提示 未锁定 未锁定 未锁定 更新 NOLOCK 未锁定 未锁定 未锁定 未锁定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 错误 更新 更新 更新 TABLOCKX 错误 未锁定 未锁定 更新其它 未锁定 未锁定 未锁定 更新 *指定 NOLOCK 提示将使指定了该提示的表在游标内是只读的。

16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在用索引优化器优化索引

17、注意UNion和UNion all 的区别。UNION all好

18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的

19、查询时不要返回不需要的行、列

20、用sp_configure 'query governor cost limit'或者SET QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。SET LOCKTIME设置锁的时间

21、用select top 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制 *** 作的行

22、在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE '%500'",因为他们不走索引全是表扫描。也不要在WHere字句中的列名加函数,如Convert,substring等,如果必须用函数的时候,创建计算列再创建索引来替代.还可以变通写法:WHERE SUBSTRING(firstname,1,1) = 'm'改为WHERE firstname like 'm%'(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT IN会多次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 来替代,特别是左连接,而Exists比IN更快,最慢的是NOT *** 作.如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同的是IS NULL,"NOT", "NOT EXISTS", "NOT IN"能优化她,而"<>"等还是不能优化,用不到索引。

23、使用Query Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。

24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引:

SELECT * FROM PersonMember (INDEX = IX_Title) WHERE processid IN ('男','女')

25、将需要查询的结果预先计算好放在表中,查询的时候再SELECT。这在SQL7.0以前是最重要的手段。例如医院的住院费计算。

26、MIN() 和 MAX()能使用到合适的索引。

27、数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure.这样不仅维护工作小,编写程序质量高,并且执行的速度快。

28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌INsert来插入(不知JAVA是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值.存储过程就没有这些动作: 方法:

Create procedure p_insert as insert into table(Fimage) values (@image)

在前台调用这个存储过程传入二进制参数,这样处理速度明显改善。

29、Between在某些时候比IN速度更快,Between能够更快地根据索引找到范围。用查询优化器可见到差别。

select * from chineseresume where title in ('男','女')

Select * from chineseresume where title between '男' and '女'

是一样的。由于in会在比较多次,所以有时会慢些。

30、在必要是对全局或者局部临时表创建索引,有时能够提高速度,但不是一定会这样,因为索引也耗费大量的资源。他的创建同是实际表一样。

31、不要建没有作用的事物例如产生报表时,浪费资源。只有在必要使用事物时使用它。

32、用OR的字句可以分解成多个查询,并且通过UNION 连接多个查询。他们的速度只同是否使用索引有关,如果查询需要用到联合索引,用UNION all执行的效率更高.多个OR的字句没有用到索引,改写成UNION的形式再试图与索引匹配。一个关键的问题是否用到索引。

33、尽量少用视图,它的效率低。对视图 *** 作比直接对表 *** 作慢,可以用stored procedure来代替她。特别的是不要用视图嵌套,嵌套视图增加了寻找原始资料的难度。我们看视图的本质:它是存放在服务器上的被优化好了的已经产生了查询规划的SQL。对单个表检索数据时,不要使用指向多个表的视图,直接从表检索或者仅仅包含这个表的视图上读,否则增加了不必要的开销,查询受到干扰.为了加快视图的查询,MsSQL增加了视图索引的功能。

34、没有必要时不要用DISTINCT和ORDER BY,这些动作可以改在客户端执行。它们增加了额外的开销。这同UNION 和UNION ALL一样的道理。

select top 20 ad.companyname,comid,position,ad.referenceid,worklocation,

convert(varchar(10),ad.postDate,120) as postDate1,workyear,degreedescription FROM

jobcn_query.dbo.COMPANYAD_query ad where referenceID in('JCNAD00329667','JCNAD132168','JCNAD00337748','JCNAD00338345',

'JCNAD00333138','JCNAD00303570','JCNAD00303569',

'JCNAD00303568','JCNAD00306698','JCNAD00231935','JCNAD00231933',

'JCNAD00254567','JCNAD00254585','JCNAD00254608',

'JCNAD00254607','JCNAD00258524','JCNAD00332133','JCNAD00268618',

'JCNAD00279196','JCNAD00268613') order by postdate desc

35、在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减少判断的次数。

36、当用SELECT INTO时,它会锁住系统表(sysobjects,sysindexes等等),阻塞其他的连接的存取。创建临时表时用显示申明语句,而不是

select INTO. drop table t_lxh begin tran select * into t_lxh from chineseresume

where name = 'XYZ' --commit

在另一个连接中SELECT * from sysobjects可以看到 SELECT INTO 会锁住系统表,Create table 也会锁系统表(不管是临时表还是系统表)。所以千万不要在事物内使用它!!!这样的话如果是经常要用的临时表请使用实表,或者临时表变量。

37、一般在GROUP BY 个HAVING字句之前就能剔除多余的行,所以尽量不要用它们来做剔除行的工作。他们的执行顺序应该如下最优:select 的Where字句选择所有合适的行,Group By用来分组个统计行,Having字句用来剔除多余的分组。这样Group By 个Having的开销小,查询快.对于大的数据行进行分组和Having十分消耗资源。如果Group BY的目的不包括计算,只是分组,那么用Distinct更快

38、一次更新多条记录比分多次更新每次一条快,就是说批处理好

39、少用临时表,尽量用结果集和Table类性的变量来代替它,Table 类型的变量比临时表好

40、在SQL2000下,计算字段是可以索引的,需要满足的条件如下:

a、计算字段的表达是确定的

b、不能用在TEXT,Ntext,Image数据类型

c、必须配制如下选项 ANSI_NULLS = ON, ANSI_PADDINGS = ON, …….

41、尽量将数据的处理工作放在服务器上,减少网络的开销,如使用存储过程。存储过程是编译好、优化过、并且被组织到一个执行规划里、且存储在数据库中的SQL语句,是控制流语言的集合,速度当然快。反复执行的动态SQL,可以使用临时存储过程,该过程(临时表)被放在Tempdb中。以前由于SQL SERVER对复杂的数学计算不支持,所以不得不将这个工作放在其他的层上而增加网络的开销。SQL2000支持UDFs,现在支持复杂的数学计算,函数的返回值不要太大,这样的开销很大。用户自定义函数象光标一样执行的消耗大量的资源,如果返回大的结果采用存储过程

42、不要在一句话里再三的使用相同的函数,浪费资源,将结果放在变量里再调用更快

43、SELECT COUNT(*)的效率教低,尽量变通他的写法,而EXISTS快.同时请注意区别: select count(Field of null) from Table 和 select count(Field of NOT null) from Table 的返回值是不同的!!!

44、当服务器的内存够多时,配制线程数量 = 最大连接数+5,这样能发挥最大的效率;否则使用 配制线程数量<最大连接数启用SQL SERVER的线程池来解决,如果还是数量 = 最大连接数+5,严重的损害服务器的性能。

45、按照一定的次序来访问你的表。如果你先锁住表A,再锁住表B,那么在所有的存储过程中都要按照这个顺序来锁定它们。如果你(不经意的)某个存储过程中先锁定表B,再锁定表A,这可能就会导致一个死锁。如果锁定顺序没有被预先详细的设计好,死锁很难被发现

46、通过SQL Server Performance Monitor监视相应硬件的负载 Memory: Page Faults / sec计数器如果该值偶尔走高,表明当时有线程竞争内存。如果持续很高,则内存可能是瓶颈。

Process:

1、% DPC Time 指在范例间隔期间处理器用在缓延程序调用(DPC)接收和提供服务的百分比。(DPC 正在运行的为比标准间隔优先权低的间隔)。 由于 DPC 是以特权模式执行的,DPC 时间的百分比为特权时间 百分比的一部分。这些时间单独计算并且不属于间隔计算总数的一部 分。这个总数显示了作为实例时间百分比的平均忙时。

2、%Processor Time计数器 如果该参数值持续超过95%,表明瓶颈是CPU。可以考虑增加一个处理器或换一个更快的处理器。

3、% Privileged Time 指非闲置处理器时间用于特权模式的百分比。(特权模式是为 *** 作系统组件和 *** 纵硬件驱动程序而设计的一种处理模式。它允许直接访问硬件和所有内存。另一种模式为用户模式,它是一种为应用程序、环境分系统和整数分系统设计的一种有限处理模式。 *** 作系统将应用程序线程转换成特权模式以访问 *** 作系统服务)。 特权时间的 % 包括为间断和 DPC 提供服务的时间。特权时间比率高可能是由于失败设备产生的大数量的间隔而引起的。这个计数器将平均忙时作为样本时间的一部分显示。

4、% User Time表示耗费CPU的数据库 *** 作,如排序,执行aggregate functions等。如果该值很高,可考虑增加索引,尽量使用简单的表联接,水平分割大表格等方法来降低该值。 Physical Disk: Curretn Disk Queue Length计数器该值应不超过磁盘数的1.5~2倍。要提高性能,可增加磁盘。 SQLServer:Cache Hit Ratio计数器该值越高越好。如果持续低于80%,应考虑增加内存。 注意该参数值是从SQL Server启动后,就一直累加记数,所以运行经过一段时间后,该值将不能反映系统当前值。

47、分析select emp_name form employee where salary >3000 在此语句中若salary是Float类型的,则优化器对其进行优化为Convert(float,3000),因为3000是个整数,我们应在编程时使用3000.0而不要等运行时让DBMS进行转化。同样字符和整型数据的转换。

48、查询的关联同写的顺序

select a.personMemberID, * from chineseresume a,personmember b where personMemberID

= b.referenceid and a.personMemberID = 'JCNPRH39681' (A = B ,B = '号码')

select a.personMemberID, * from chineseresume a,personmember b where a.personMemberID

= b.referenceid and a.personMemberID = 'JCNPRH39681' and b.referenceid = 'JCNPRH39681' (A = B ,B = '号码', A = '号码')

select a.personMemberID, * from chineseresume a,personmember b where b.referenceid

= 'JCNPRH39681' and a.personMemberID = 'JCNPRH39681' (B = '号码', A = '号码')

49、

(1)IF 没有输入负责人代码 THEN code1=0 code2=9999 ELSE code1=code2=负责人代码 END IF 执行SQL语句为: SELECT 负责人名 FROM P2000 WHERE 负责人代码>=:code1 AND负责人代码 <=:code2

(2)IF 没有输入负责人代码 THEN SELECT 负责人名 FROM P2000 ELSE code= 负责人代码 SELECT 负责人代码 FROM P2000 WHERE 负责人代码=:code END IF 第一种方法只用了一条SQL语句,第二种方法用了两条SQL语句。在没有输入负责人代码时,第二种方法显然比第一种方法执行效率高,因为它没有限制条件在输入了负责人代码时,第二种方法仍然比第一种方法效率高,不仅是少了一个限制条件,还因相等运算是最快的查询运算。我们写程序不要怕麻烦

50、关于JOBCN现在查询分页的新方法(如下),用性能优化器分析性能的瓶颈,如果在I/O或者网络的速度上,如下的方法优化切实有效,如果在CPU或者内存上,用现在的方法更好。请区分如下的方法,说明索引越小越好。

begin

DECLARE @local_variable table (FID int identity(1,1),ReferenceID varchar(20))

insert into @local_variable (ReferenceID)

select top 100000 ReferenceID from chineseresume order by ReferenceID

select * from @local_variable where Fid >40 and fid <= 60

end

begin

DECLARE @local_variable table (FID int identity(1,1),ReferenceID varchar(20))

insert into @local_variable (ReferenceID)

select top 100000 ReferenceID from chineseresume order by updatedate

select * from @local_variable where Fid >40 and fid <= 60

end

的不同

begin

create table #temp (FID int identity(1,1),ReferenceID varchar(20))

insert into #temp (ReferenceID)

select top 100000 ReferenceID from chineseresume order by updatedate

select * from #temp where Fid >40 and fid <= 60 drop table #temp

end

本文首先讨论了基于第三范式的数据库表的基本设计,着重论述了建立主键和索引的策略和方案,然后从数据库表的扩展设计和库表对象的放置等角度概述了数据库管理系统的优化方案。

关键词: 优化(Optimizing) 第三范式(3NF) 冗余数据(Redundant Data) 索引(Index) 数据分割(Data Partitioning) 对象放置(Object Placement)

1 引言

数据库优化的目标无非是避免磁盘I/O瓶颈、减少CPU利用率和减少资源竞争。为了便于读者阅读和理解,笔者参阅了Sybase、Informix和Oracle等大型数据库系统参考资料,基于多年的工程实践经验,从基本表设计、扩展设计和数据库表对象放置等角度进行讨论,着重讨论了如何避免磁盘I/O瓶颈和减少资源竞争,相信读者会一目了然。

2 基于第三范式的基本表设计

在基于表驱动的信息管理系统(MIS)中,基本表的设计规范是第三范式(3NF)。第三范式的基本特征是非主键属性只依赖于主键属性。基于第三范式的数据库表设计具有很多优点:一是消除了冗余数据,节省了磁盘存储空间;二是有良好的数据完整性限制,即基于主外键的参照完整限制和基于主键的实体完整性限制,这使得数据容易维护,也容易移植和更新;三是数据的可逆性好,在做连接(Join)查询或者合并表时不遗漏、也不重复;四是因消除了冗余数据(冗余列),在查询(Select)时每个数据页存的数据行就多,这样就有效地减少了逻辑I/O,每个Cash存的页面就多,也减少物理I/O;五是对大多数事务(Transaction)而言,运行性能好;六是物理设计(Physical Design)的机动性较大,能满足日益增长的用户需求。

在基本表设计中,表的主键、外键、索引设计占有非常重要的地位,但系统设计人员往往只注重于满足用户要求,而没有从系统优化的高度来认识和重视它们。实际上,它们与系统的运行性能密切相关。现在从系统数据库优化角度讨论这些基本概念及其重要意义:

(1)主键(Primary Key):主键被用于复杂的SQL语句时,频繁地在数据访问中被用到。一个表只有一个主键。主键应该有固定值(不能为Null或缺省值,要有相对稳定性),不含代码信息,易访问。把常用(众所周知)的列作为主键才有意义。短主键最佳(小于25bytes),主键的长短影响索引的大小,索引的大小影响索引页的大小,从而影响磁盘I/O。主键分为自然主键和人为主键。自然主键由实体的属性构成,自然主键可以是复合性的,在形成复合主键时,主键列不能太多,复合主键使得Join*作复杂化、也增加了外键表的大小。人为主键是,在没有合适的自然属性键、或自然属性复杂或灵敏度高时,人为形成的。人为主键一般是整型值(满足最小化要求),没有实际意义,也略微增加了表的大小;但减少了把它作为外键的表的大小。

(2)外键(Foreign Key):外键的作用是建立关系型数据库中表之间的关系(参照完整性),主键只能从独立的实体迁移到非独立的实体,成为后者的一个属性,被称为外键。

(3)索引(Index):利用索引优化系统性能是显而易见的,对所有常用于查询中的Where子句的列和所有用于排序的列创建索引,可以避免整表扫描或访问,在不改变表的物理结构的情况下,直接访问特定的数据列,这样减少数据存取时间;利用索引可以优化或排除耗时的分类*作;把数据分散到不同的页面上,就分散了插入的数据;主键自动建立了唯一索引,因此唯一索引也能确保数据的唯一性(即实体完整性);索引码越小,定位就越直接;新建的索引效能最好,因此定期更新索引非常必要。索引也有代价:有空间开销,建立它也要花费时间,在进行Insert、Delete和Update*作时,也有维护代价。索引有两种:聚族索引和非聚族索引。一个表只能有一个聚族索引,可有多个非聚族索引。使用聚族索引查询数据要比使用非聚族索引快。在建索引前,应利用数据库系统函数估算索引的大小。

① 聚族索引(Clustered Index):聚族索引的数据页按物理有序储存,占用空间小。选择策略是,被用于Where子句的列:包括范围查询、模糊查询或高度重复的列(连续磁盘扫描);被用于连接Join*作的列;被用于Order by和Group by子句的列。聚族索引不利于插入*作,另外没有必要用主键建聚族索引。

② 非聚族索引(Nonclustered Index):与聚族索引相比,占用空间大,而且效率低。选择策略是,被用于Where子句的列:包括范围查询、模糊查询(在没有聚族索引时)、主键或外键列、点(指针类)或小范围(返回的结果域小于整表数据的20%)查询;被用于连接Join*作的列、主键列(范围查询);被用于Order by和Group by子句的列;需要被覆盖的列。对只读表建多个非聚族索引有利。索引也有其弊端,一是创建索引要耗费时间,二是索引要占有大量磁盘空间,三是增加了维护代价(在修改带索引的数据列时索引会减缓修改速度)。那么,在哪种情况下不建索引呢?对于小表(数据小于5页)、小到中表(不直接访问单行数据或结果集不用排序)、单值域(返回值密集)、索引列值太长(大于20bitys)、容易变化的列、高度重复的列、Null值列,对没有被用于Where子语句和Join查询的列都不能建索引。另外,对主要用于数据录入的,尽可能少建索引。当然,也要防止建立无效索引,当Where语句中多于5个条件时,维护索引的开销大于索引的效益,这时,建立临时表存储有关数据更有效。

批量导入数据时的注意事项:在实际应用中,大批量的计算(如电信话单计费)用C语言程序做,这种基于主外键关系数据计算而得的批量数据(文本文件),可利用系统的自身功能函数(如Sybase的BCP命令)快速批量导入,在导入数据库表时,可先删除相应库表的索引,这有利于加快导入速度,减少导入时间。在导入后再重建索引以便优化查询。

(4)锁:锁是并行处理的重要机制,能保持数据并发的一致性,即按事务进行处理;系统利用锁,保证数据完整性。因此,我们避免不了死锁,但在设计时可以充分考虑如何避免长事务,减少排它锁时间,减少在事务中与用户的交互,杜绝让用户控制事务的长短;要避免批量数据同时执行,尤其是耗时并用到相同的数据表。锁的征用:一个表同时只能有一个排它锁,一个用户用时,其它用户在等待。若用户数增加,则Server的性能下降,出现“假死”现象。如何避免死锁呢?从页级锁到行级锁,减少了锁征用;给小表增加无效记录,从页级锁到行级锁没有影响,若在同一页内竞争有影响,可选择合适的聚族索引把数据分配到不同的页面;创建冗余表;保持事务简短;同一批处理应该没有网络交互。

(5)查询优化规则:在访问数据库表的数据(Access Data)时,要尽可能避免排序(Sort)、连接(Join)和相关子查询*作。经验告诉我们,在优化查询时,必须做到:

① 尽可能少的行;

② 避免排序或为尽可能少的行排序,若要做大量数据排序,最好将相关数据放在临时表中*作;用简单的键(列)排序,如整型或短字符串排序;

③ 避免表内的相关子查询;

④ 避免在Where子句中使用复杂的表达式或非起始的子字符串、用长字符串连接;

⑤ 在Where子句中多使用“与”(And)连接,少使用“或”(Or)连接;

⑥ 利用临时数据库。在查询多表、有多个连接、查询复杂、数据要过滤时,可以建临时表(索引)以减少I/O。但缺点是增加了空间开销。

除非每个列都有索引支持,否则在有连接的查询时分别找出两个动态索引,放在工作表中重新排序。

3 基本表扩展设计

基于第三范式设计的库表虽然有其优越性(见本文第一部分),然而在实际应用中有时不利于系统运行性能的优化:如需要部分数据时而要扫描整表,许多过程同时竞争同一数据,反复用相同行计算相同的结果,过程从多表获取数据时引发大量的连接*作,当数据来源于多表时的连接*作;这都消耗了磁盘I/O和CPU时间。

尤其在遇到下列情形时,我们要对基本表进行扩展设计:许多过程要频繁访问一个表、子集数据访问、重复计算和冗余数据,有时用户要求一些过程优先或低的响应时间。

如何避免这些不利因素呢?根据访问的频繁程度对相关表进行分割处理、存储冗余数据、存储衍生列、合并相关表处理,这些都是克服这些不利因素和优化系统运行的有效途径。

3.1 分割表或储存冗余数据

分割表分为水平分割表和垂直分割表两种。分割表增加了维护数据完整性的代价。

水平分割表:一种是当多个过程频繁访问数据表的不同行时,水平分割表,并消除新表中的冗余数据列;若个别过程要访问整个数据,则要用连接*作,这也无妨分割表;典型案例是电信话单按月分割存放。另一种是当主要过程要重复访问部分行时,最好将被重复访问的这些行单独形成子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但在分割表以后,增加了维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。

垂直分割表(不破坏第三范式),一种是当多个过程频繁访问表的不同列时,可将表垂直分成几个表,减少磁盘I/O(每行的数据列少,每页存的数据行就多,相应占用的页就少),更新时不必考虑锁,没有冗余数据。缺点是要在插入或删除数据时要考虑数据的完整性,用存储过程维护。另一种是当主要过程反复访问部分列时,最好将这部分被频繁访问的列数据单独存为一个子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但这增加了重叠列的维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。垂直分割表可以达到最大化利用Cache的目的。

总之,为主要过程分割表的方法适用于:各个过程需要表的不联结的子集,各个过程需要表的子集,访问频率高的主要过程不需要整表。在主要的、频繁访问的主表需要表的子集而其它主要频繁访问的过程需要整表时则产生冗余子集表。

注意,在分割表以后,要考虑重新建立索引。

3.2 存储衍生数据

对一些要做大量重复性计算的过程而言,若重复计算过程得到的结果相同(源列数据稳定,因此计算结果也不变),或计算牵扯多行数据需额外的磁盘I/O开销,或计算复杂需要大量的CPU时间,就考虑存储计算结果(冗余储存)。现予以分类说明:

若在一行内重复计算,就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器更新这个新列。

若对表按类进行重复计算,就增加新表(一般而言,存放类和结果两列就可以了)存储相关结果。但若参与计算的列被更新时,就必须要用触发器立即更新、或存储过程或应用代码批量更新这个新表。

若对多行进行重复性计算(如排名次),就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器或存储过程更新这个新列。

总之,存储冗余数据有利于加快访问速度;但违反了第三范式,这会增加维护数据完整性的代价,必须用触发器立即更新、或存储过程或应用代码批量更新,以维护数据的完整性。

3.3 消除昂贵结合

对于频繁同时访问多表的一些主要过程,考虑在主表内存储冗余数据,即存储冗余列或衍生列(它不依赖于主键),但破坏了第三范式,也增加了维护难度。在源表的相关列发生变化时,必须要用触发器或存储过程更新这个冗余列。当主要过程总同时访问两个表时可以合并表,这样可以减少磁盘I/O*作,但破坏了第三范式,也增加了维护难度。对父子表和1:1关系表合并方法不同:合并父子表后,产生冗余表;合并1:1关系表后,在表内产生冗余数据。

4 数据库对象的放置策略

数据库对象的放置策略是均匀地把数据分布在系统的磁盘中,平衡I/O访问,避免I/O瓶颈。

⑴ 访问分散到不同的磁盘,即使用户数据尽可能跨越多个设备,多个I/O运转,避免I/O竞争,克服访问瓶颈;分别放置随机访问和连续访问数据。

⑵ 分离系统数据库I/O和应用数据库I/O。把系统审计表和临时库表放在不忙的磁盘上。

⑶ 把事务日志放在单独的磁盘上,减少磁盘I/O开销,这还有利于在障碍后恢复,提高了系统的安全性。

⑷ 把频繁访问的“活性”表放在不同的磁盘上;把频繁用的表、频繁做Join*作的表分别放在单独的磁盘上,甚至把把频繁访问的表的字段放在不同的磁盘上,把访问分散到不同的磁盘上,避免I/O争夺;

⑸ 利用段分离频繁访问的表及其索引(非聚族的)、分离文本和图像数据。段的目的是平衡I/O,避免瓶颈,增加吞吐量,实现并行扫描,提高并发度,最大化磁盘的吞吐量。利用逻辑段功能,分别放置“活性”表及其非聚族索引以平衡I/O。当然最好利用系统的默认段。另外,利用段可以使备份和恢复数据更加灵活,使系统授权更加灵活。

说到代码优化,每个人或多或少都掌握一到两种方法,但是这样的方法对提升代码运行效率效果不大,最重要是对代码的重视和了解,这样才能提升代码的运行效率。在进行代码优化的过程中,方法是非常重要的,多掌握几种方法,根据代码的不同情况选择适合的方法进行优化。下面电脑培训为大家介绍Java代码优化的几种方法。

1、使用指定类、方法的final修饰符

具有final修饰符的类不可派生。在Java核心API中,有许多最终应用程序的例子,例如java.lang.String,整个类都是final。为类指定final修饰符允许继承类,并且为方法指定final修饰符允许覆盖该方法。如果将类指定为final,IT培训认为该类的所有方法都是final。Java编译器将寻找内联所有最终方法的机会。内联对于提高Java *** 作的效率非常重要。这可以将性能平均提高50%。

2、重用对象

String对象的使用是非常重要的,StringBuilder/StringBuffer并不是字符串连接。由于Java虚拟机需要时间来生成对象,所以将来垃圾收集和处理这些对象可能需要一些时间。因此,生成太多对象将对程序的性能产生很大影响。

3、使用局部变量

调用方法时传递的参数以及在调用中创建的临时变量都保存在堆栈中,速度更快。其他变量(如静态变量和实例变量)在堆中创建并且速度较慢。此外,丽江北大青鸟发现在堆栈中创建的变量,当方法完成运行时,内容消失,不需要进行额外的垃圾收集。

4、及时关闭流

在Java编程过程中,在执行数据库连接和I/O流 *** 作时要小心。使用后,北大青鸟丽江嘉荟校区官网建议应及时关闭以释放资源。因为这些大型物体的 *** 作会导致系统的大量开销,稍微粗心会导致严重的后果。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9649517.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-30
下一篇 2023-04-30

发表评论

登录后才能评论

评论列表(0条)

保存