MySQL:免费产品,内存存储引擎使用较少。
SQL Server:微软的商业化产品,是为了适应大数据等业务产品新添加的存储引擎,微软SQL语句兼容性好,商业化成熟度高。
数蚕内存数据库:数蚕科技针对中小型企业的内存数据库,目前成熟度较弱,c++接口特性良好,SQL特性较弱,只支持基本的SQL语句 *** 作,不支持事务。
Oracle 内存数据库:基于内存计算的关系数据库, 提供了响应时间极 短且吞吐量极高的应用程序。
非关系型内存数据库主要有FastDB、Memcached和Redis等主流内存数据库。结构简单,支持数据结构多以基础数据结构为主,一般应用于缓存等非关键数据存储,其优点是数据查询速度快,对下层编程接口良好。
问题一:内存数据库主流的有哪些,并给出各自特点! 这里介绍一些大型的市场占有率比较高的内存数据库,也是业界响当当的―SAP HANA、Oracle Exalytics、Orale TimesTen、IBM SolidDB,可以说他们之间没有说是哪个最好,主要还是看使用的场景和具体的需求,各自特点如下:SAP HANA(High-Performance Analytic Appliance)是 SAP 公司于 2011 年推出的基于 内存计算技术,面向企业分析性应用的产品。左图 的系统架构示意图中可以看出, HANA 产品主要包括内存计算引擎和 HANA 建模工具两部分。它支持从 SAP 商务套件中 同步更新业务数据,或者从 SAP BW(SAP 商务智能产品)和其他第三方数据源中批量导 入数据,在 HANA 中进行运算后,提供给 SAP BI 客户端或者其他第三方展现工具进行分 析和展现。
Oracle Exalytics 内存分析一体机是面向分析的集成设计系统,可以无限制提供最佳可 视化分析和更智能的分析应用程序。 如图 所示, Oracle Exalytics 内存分析一体机的产品架构包括 3 个部分: 内容分析 硬件、内存分析软件和经过优化的 Oracle 商务智能基础套件(Oracle BI Foundation)。内存分析硬件部分是一台为基于内存计算的商务智能而特别优化的服务器,具有提供 强劲计算能力的 40 核中央处理器,高达 1TB 的内存以及快速的网络. 内存分析软件部分的核心是 Oracle TimesTen 内存数据库。它是为 Exalytics 平台而特 别优化的内存分析数据库,包括了很多 Oracle Exalytics 平台特有的功能。Oracle 商务智能基础套件部分受益于 Oracle Exalytics 内存分析一体机的大容量内存、 处理器、并发处理能力、存储、网络、 *** 作系统、内核和系统配置等,可以提供明显优于传统软件的查询响应性、用户可用性和 TCO。
Oracle 内存数据库TimesTen 是一个基于内存计算的关系数据库, 提供了响应时间极 短且吞吐量极高的应用程序,可满足各行业应用程序的需求。 TimesTen 是一个可嵌入到应用程序中的数据库, 通过消除进程间通信和网络 开销,进一步提高数据库 *** 作的性能。Oracle 内 存 数 据 库 TimesTen 使 用 行 级 锁 定 和 提 交 后 读 取 (mitted-read) 隔离,通过事务日志记录与数据库检查点相结合实现了基于磁盘的持久 性和可恢复性。TimesTen 通常与多用户和多线程应用程序一起部署,应用程序直接通过 JDBC、 ODBC、 Oracle 调用接口、 Pro*C/C++ 和Oracle PL/SQL 编程接口, 使用标准SQL 访问TimesTen 数据库。若运行在不同服务器上的多个应用程序共享一个数据库时,则使 用常规的客户端/服务器访问方式。
IBM solidDB 是一个内存数据库,专为获取极高的速度和可用性而进行优化。如图 所示,IBM solidDB 既可以单独部署作为独立的数据库支持应用程序,也可 以部署为其他关系型数据库的加速缓存以提高应用程序性能。solidDB Universal Cache 功能将这些数据库中存储的性能关键型数据 缓存到solidDB Universal Cache 中,加快领先关系数据库的速度。solidDB Universal Cache 功能使用检查点和事务日志将数据持久保存在 磁盘上......>>
问题二:开源的内存数据库都有哪些 1.最简单的方法:
public static String reverse1(String str)
{
return new StringBuffer(str).reverse().toString()
}
2.最常用的方法:
public static String reverse3(String s)
{
char[] array = s.toCharArray()
String reverse = 注意这是空串,不是null
for (int i = array.length - 1i >= 0i--)
reverse += array[i]
return reverse
}
问题三:开源内存数据库有几种啊? 常见的有FastDB、SQLite、Berkeley DB、GigaBASE,H2等
问题四:几种常用的开源内存数据库性能比较 本人理解:orcal速度快但是维护不方便吗,费钱。mysql速度可以,维护方便,交orcal来说易上手。db2:大
问题五:开源的内存数据库有哪些支持SQL基准 选择数据库实例―右键属性―选择【内存】选择页―修改内存―确定
问题六:C/C++开发的开源的分布式内存数据库有哪些 1.最简单的方法:
public static String reverse1(String str)
{
return new StringBuffer(str).reverse().toString()
}
2.最常用的方法:
public static String reverse3(String s)
{
char[] array = s.toCharArray()
String reverse = 注意这是空串,不是null
for (int i = array.length - 1i >= 0i--)
reverse += array[i]
return reverse
}
问题七:哪位达人用过关系型的内存数据库而且是开源的 关系型数据库以行和列的形式存储数据,以便于用户理解。这一系列的行和列被称为表,一组表组成了数据库。表与表之间的数据记录有关系。用户用查询(Query)来检索数据库中的数据。一个Query是一个用于指定数据库中行和列的SELECT语句。关系型数据库通常包含下列组件: 客户端应用程序(Client) 数据库服务器(Server) Structured Query Language(SQL)Client端和Server端的桥梁,Client用SQL来向Server端发送请求,Server返回Client端要求的结果。现在流行的大型关系型数据库有IBM DB2、Oracle、SQL Server、SyBase、Informix、access、foxpro等。
问题八:C/C++开发的开源的分布式内存数据库有哪些 1.最简单的方法:public static String reverse1(String str){ return new StringBuffer(str).reverse().toString()}2.最常用的方法:public static String reverse3(String s) { char[] array = s.toCharArray()String reverse = 注意这是空串,不是null for (int i = array.length - 1i >= 0i--) reverse += array[i]return reverse} 3.常用方法的变形: public static String reverse2(String s){ int length = s.length()String reverse = 注意这是空串,不是null for (int i = 0i 问题九:要求实时数据需要存储到内存库 有开源内存数据库吗 朋友您好,很高兴为您解答问题
请把问题补充完整
大家才能给你提供完善的建议
相信您在知道这个平台
一定会有满意的收获
真诚希望能够帮助您,如果满意请采纳,祝您好运常伴。
问题十:什么情况下用内存数据库 相对于磁盘,内存的数据读写速度要高出几个数量级,将数据保存在内存中相比从磁盘 *** 问能够极大地提高应用的性能。同时,内存数据库抛弃了磁盘数据管理的传统方式,基于全部数据都在内存中重新设计了体系结构,并且在数据缓存、快速算法、并行 *** 作方面也进行了相应的改进,所以数据处理速度比传统数据库的数据处理速度要快很多,一般都在10倍以上。内存数据库的最大特点是其主拷贝或工作版本 常驻内存,即活动事务只与实时内存数据库的内存拷贝打交道。显然,它要求较大的内存量,但并非任何时刻整个数据库都存放在内存,即内存数据库系统还是要处理I/O。
内存数据库是以牺牲内存资源为代价换取数据处理实时性的,内存数据库和磁盘数据库都是当今信息社会里每个企业所必须的关系型数据库产品,磁盘数据库解决的是大容量存储和数据分析问题,而内存数据库解决的是实时处理和高并发问题。两者的存在是相辅相成的,内存数据库的事务实时处理性能要远强于磁盘数据库。但是相对的,他的数据安全方面还没有达到磁盘数据库比肩的地步。
内存数据库将物理内存作为数据的第一存储介质,而将磁盘作为备份。随着电信业务的发展,系统对实时性的要求和对业务灵活修改的要求非常高,在此种情况下对于内存数据库的需求也越来越高。磁盘数据库的做法是将数据存入内存中进行处理,这种方式的可管理性及数据安全可靠性都没有保障。而内存数据库正是针对这一弱点进行了改进。
实际上,内存数据库并不是一项时髦技术,其出现于上世纪60年代末,但由于市场的需求原因在90年代后期才开始发展。作为新一代数据库,Altibase产品已经走向混合型数据库,其版本Altibase 4.0已经有一套自带的磁盘数据库,用户一旦购买了Altibase的内存数据库,就无须再购买磁盘数据库。它把热数据(经常被使用的、访问比较高的、经常要运算的数据)放在内存数据库里,而把历史性数据放在磁盘数据库里,可为用户进一步减少投资。
对于内存数据库而言,可以将同样数据库的部分内容存放于磁盘上,而另一部分存放于内存中。用户可以选择将数据存储在内存表中以提供即时的数据访问。若访问时间不紧急或数据存于内存中所占空间过大时,用户可将这些数据存入磁盘表中。
比如,在手机用户开始拔打电话时,如果应用基于内存数据库技术的混合数据管理引擎,就通过内存表检索其服务选项并立即验证用户身份,而将通话清单和计费清单归档到磁盘表中。从而,达到了速度与资源使用的平衡。
内存数据库的技术,一个很重要的特点,是可以对内存中的数据实现全事务处理,这是仅仅把数据以数组等形式放在内存中完全不同的。并且,内存数据库是与应用无关的,显然这种体系结构具有其合理性。内存引擎可以实现查询与存档功能使用的是完全相同的数据库,同时内存表与磁盘表也使用的是完全相同的存取方法。存储的选择,对于应用开发者而言是完全透明的。
对于内存数据库而言,实现了数据在内存中的管理,而不仅仅是作为数据库的缓存。不像其它将磁盘数据块缓存到主存中的数据库,内存数据库的内存引擎使用了为随机访问内存而特别设计的数据结构和算法,这种设计使其避免了因使用排序命令而经常破坏缓存数据库性能的问题。通过内存数据库,减少了磁盘I/O,能够达到了以磁盘I/O 为主的传统数据库无法与其相比拟的处理速度。
因此,内存数据库技术的应用,可以大大提高数据库的速度,这对于需要高速反应的数据库应用,如电信、金融等提供了有力支撑。
由于把大多数数据都放在内存中进行 *** 作,使得内存数据库有着比磁盘数据库高得多的性能表现,这一......>>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)