python数据分析师。现在大数据分析可以热得不要不要的。从发展来看,python数据分析师很有前景的。但也并不是随便一个公司就可以做大数据分析的。有几个问题是做大数据要考虑的:大数据来源是否全面,分析什么,谁来使用等等。当然如果能到能做大数据的公司,那薪水还是可观的。要做python数据分析师,有一些东西是不得不学的,要不然,做不了分析师的,可能做的程序员,帮别人实现分析的结果而已。第一:统计学知识。(推荐学习:Python视频教程)
这是很大一部分大数据分析师的短板。当然这里说的不是简单的一些统计而已。而是包括均值、中位数、标准差、方差、概率、假设检验等等具有时间、空间、数据本身。差不多应该是理工科的高等数学的知识,甚至还高一点儿。要能够建模,要不然你分析出来的结果离实际相差十万八千里的话,估计要不了几天,你就会被卷铺盖走人了。当然,做个一般的大数据分析师,就不会涉及到很深的高等数学知识了,但要做一个牛B的大数据分析师,还是要学习学习再学习。
第二:很多人想不到的,你还是把EXCEL玩熟悉吧。
当然不需要掌握的高大全,也得要掌握常用的函数,比如重点包括但不限于sum,count,sumif,countif,find,if,left/right,时间转换,透视表,各种图表做法等之类的。如果数据量不算是特别大的话,Excel能够解决很多问题。比如,筛选部分赃数据,排序,挑选满足条件的数据等等。
第三:分析思维的练习。
比如结构化思维、思维导图、或百度脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
第四:数据库知识。
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、Riak、Membase、Neo4j和HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
第五:业务学习。
其实对于大数据分析师来说,了解业务比了解数据更重要。对于行业业务是怎么走的对于数据的分析有着非常重要的作用,不了解业务,可能你分析的结果不是别人想要的。
第六:开发工具及环境。
比如:LinuxOS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具python等等语言工具。
总之,要做一个高级或总监级的大数据分析师那是相当的烧脑的。要学习了解的东西如果只是单纯的数据方面的话,那业务和统计知识的学习是必不可少的。如果是实用型的大数据分析师可能只掌握某些部分就可以。大数据开发工程师的话,基本就是掌握开发环境、开发语言以及各种图表的应用,也是可以满足的。毕竟,一个公司要团队协作,一人懂一部分就可以搞出分析产品出来了。认定一项事情就去干!越干越轻松,越干越牛B!
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python数据分析师需要学什么的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
如下。。。
CREATE DATABASE MYDB
ON
PRIMARY (NAME=MyDB_data,
FILENAME='C:\MYDBmdf',
SIZE=50MB,
MAXSIZE=70MB,
FILEGROW=1MB)
LOG ON
(NAME=MYDB_log,
FILENAME='C:\MYDBldf',
SIZE=15MB,
MAXSIZE=20MB,
FILEGROWTH=1MB)
一、sqlserver
优点:
易用性、适合分布式组织的可伸缩性、用于决策支持的数据仓库功能、与许多其他服务器软件紧密关联的集成性、良好的性价比等;
为数据管理与分析带来了灵活性,允许单位在快速变化的环境中从容响应,从而获得竞争优势。从数据管理和分析角度看,将原始数据转化为商业智能和充分利用Web带来的机会非常重要。作为一个完备的数据库和数据分析包,SQLServer为快速开发新一代企业级商业应用程序、为企业赢得核心竞争优势打开了胜利之门。作为重要的基准测试可伸缩性和速度奖的记录保持者,SQLServer是一个具备完全Web支持的数据库产品,提供了对可扩展标记语言 (XML)的核心支持以及在Internet上和防火墙外进行查询的能力;
缺点:
开放性 :SQL Server 只能windows上运行没有丝毫开放性 *** 作系统系统稳定对数据库十分重要Windows9X系列产品偏重于桌面应用NT server只适合小型企业而且windows平台靠性安全性和伸缩性非常有限象unix样久经考验尤其处理大数据库;
伸缩性并行性 :SQL server 并行实施和共存模型并成熟难处理日益增多用户数和数据卷伸缩性有限;
安全性:没有获得任何安全证书。
性能 :SQL Server 多用户时性能佳 ;
客户端支持及应用模式: 客户端支持及应用模式。只支持C/S模式,SQL Server C/S结构只支持windows客户用ADO、DAO、OLEDB、ODBC连接;
使用风险:SQL server 完全重写代码经历了长期测试断延迟许多功能需要时间来证明并十分兼容;
二、MySql
优点:
体积小、速度快、总体拥有成本低,开源;
支持多种 *** 作系统;
是开源数据库,提供的接口支持多种语言连接 *** 作
MySql的核心程序采用完全的多线程编程。线程是轻量级的进程,它可以灵活地为用户提供服务,而不过多的系统资源。用多线程和C语言实现的MySql能很容易充分利用CPU;
MySql有一个非常灵活而且安全的权限和口令系统。当客户与MySql服务器连接时,他们之间所有的口令传送被加密,而且MySql支持主机认证;
支持ODBC for Windows, 支持所有的ODBC 25函数和其他许多函数, 可以用Access连接MySql服务器, 使得应用被扩展;
支持大型的数据库, 可以方便地支持上千万条记录的数据库。作为一个开放源代码的数据库,可以针对不同的应用进行相应的修改。
拥有一个非常快速而且稳定的基于线程的内存分配系统,可以持续使用面不必担心其稳定性;
MySQL同时提供高度多样性,能够提供很多不同的使用者介面,包括命令行客户端 *** 作,网页浏览器,以及各式各样的程序语言介面,例如C+,Perl,Java,PHP,以及Python。你可以使用事先包装好的客户端,或者干脆自己写一个合适的应用程序。MySQL可用于Unix,Windows,以及OS/2等平台,因此它可以用在个人电脑或者是服务器上;
缺点:
不支持热备份;
MySQL最大的缺点是其安全系统,主要是复杂而非标准,另外只有到调用mysqladmin来重读用户权限时才发生改变;
没有一种存储过程(Stored Procedure)语言,这是对习惯于企业级数据库的程序员的最大限制;
MySQL的价格随平台和安装方式变化。Linux的MySQL如果由用户自己或系统管理员而不是第三方安装则是免费的,第三方案则必须付许可费。Unix或Linux 自行安装 免费 、Unix或Linux 第三方安装 收费;
① Excel工具
对于数据分析师来说,Excel是一个必备的技能,经过大量的实践发现,Excel是一个比较靠谱的工具,如果用Excel分析数据,就能够做好数据的分析,同时Excel *** 作也是比较简单的,不是程序员也能够正常的使用。现在有很多企业都在使用Excel这项工具进行去分析数据,所以,数据分析师必须要学会使用Excel。
②行业知识
对于数据分析师来说,业务的了解比数据方法论更重要。而且业务学习没有捷径,基本都靠不断的思考与不断的总结,这样才能够做好数据分析。
③SQL
sql是所有数据库查询的语言,而数据库也是有很多的类型的,比如mysql、sqlserver、oracle等等,对于不同的数据库,sql语法会有所不同,但是总体上大同小异,只是细微处的差别。如果大家有数据库基础的话,那么只需要找些sql的题目做一做,这样也能够提到sql水平。
④数据分析思维
如果作为一名数据分析师,需要很缜密的心思以及对数据很敏感的喜欢,这样才能够发现他人会遗漏的东西。有力这些还不够,我们还需要有一个数据分析的思维,那么怎么有一个数据分析的思维呢一般来说,需要梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即清楚如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。同时,确保分析框架的体系化和逻辑性。
⑤统计学
一名优秀的数据分析师还应该精通统计学,只有学会了统计学,才能够进行数据分析,数据分析是通过大量的数据进行挑选出有用的数据,这样才能够做好正确的分析。统计学的统计知识能够让我们多了一种角度去看待数据,这样能够看出不同的情况,为数据分析中提供了参考价值。
数据库数据集合顾名思义库存储地方嘛即存放大量数据地方而往数据库里放数据或者访问数据库里数据方式数据结构内容了
数据库相当于容器数据结构相当于往容器里放东西方式和取东西方式没有数据结构容器里东西(数据)会杂乱无章取出来也麻烦
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Aess2003、Aess07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力;
SQLServer2005或更高版本,对中小企业,一些大型企业也可以采用SQLServer数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了;
DB2,Oracle数据库都是大型数据库,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。DataWarehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现,BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表/BI层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。过去传统报表大多解决的是展现问题,如今像帆软报表FineReport也会和其他应用交叉,做数据分析报表,通过接口开放功能、填报、决策报表功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、Qlikview、FineBI这类BI工具,可分在报表层也可分为数据展现层,涵盖了数据整合、数据分析和数据展现。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,可常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份——商业智能,所以在大数据处理方面的能力更胜一筹。
根本不是一类的东西嘛,怎么比?
这么说吧:
excel拿来分析是很强悍的,它里面内置的那么多函数几乎可以满足现实中90%以上的数据分析需要,而且它的数据报表功能超灵活,加上它足够简单,这就是excel的优点。
但你如果拿excel作软件的后台数据库就很糟糕了,因为excel只能作为桌面型的数据库来使用,你任何的查询都导致全部数据的网络传递,不仅服务器疲于奔命,网络占用高,客户机的负担也超大。
不信你在10万条记录里面进行SQL检索,采用sql server跟excel的数据返回速度完全不在一个档次上。
sql server作为服务器数据库,它只返回限于程序提交的查询语句的对应记录,所以能用于大型数据处理
数据分析软件有很多。只要是满足自己需求的都是最好的。大数据分析工具在数据收集、数据管理上也要有一些要求。
例如可以的可以提供高级的数据分析算法以及数据模型的分析,不仅仅可以进行结构化数据的分析,也可以进行非结构化数据的分析,还有集成算法和数据挖掘等功能,这些都是大数据分析工具必须要包含的一些功能。
不同的软件提供商对于数据的算法或者一些支持的方式也会有一些不同,企业也要考量哪些是最适合自己使用的,技术不是复杂越好。
这里我建议可以了解一下思迈特软件Smartbi的数据分析软件,思迈特软件Smartbi大数据分析产品融合BI定义的所有阶段,对接各种业务数据库、数据仓库和大数据分析平台,进行加工处理、分析挖掘和可视化展现。
满足所有用户的各种数据分析应用需求,如大数据分析、可视化分析、探索式分析、复杂报表、应用分享等等。
广州思迈特软件Smartbi有限公司致力于为客户提供一站式商业智能BI解决方案,通过思迈特软件Smartbi产品为客户提供企业报表、数据可视化、自助分析、数据挖掘等成熟功能 。
以上就是关于python数据分析师需要学什么_数据分析师python要求全部的内容,包括:python数据分析师需要学什么_数据分析师python要求、SQLSERVER中如何用查询分析器来创建数据库,并且能分配数据文件和日志文件的大小,指定他们所在的位置、SQL Server 与 MySQL 性能相差多大等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)