数据库集群是什么

数据库集群是什么,第1张

数据库集群,指利用两台或多台数据库服务器,构成一个虚拟单一数据库逻辑映像,向客户端提供透明的数据服务;

关键点:

1、一台数据库服务器不能称为集群;

2、集群向客户端提供的服务与单机系统向客户端提供的服务从通讯协议上保持二进制兼容;

分布式数据库系统的区别:

1、数据库集群具有单份,两份或多份相似数据集,也具有两份或多份实时一致的数据集,分布式数据库系统具有完全不同的数据集;

2、数据库集群是同构系统,要求集群各节点都有相同的 *** 作系统和数据库系统版本,补丁包版本也保持一致,分布式数据库系统可以是异构系统,包含不同的 *** 作系统和不同的数据库系统;

3、数据库集群建立在高速局域网内,分布式数据库系统是高速局域网,也是跨部门,跨单位的异地远程网络。

我来说吧!

一句话介绍:思极有容数据库思极有容数据库思极有容数据库(思极有容数据库)是一款国产自主可控的分布式关系型数据库集群软件,极致稳定,极致易用,极致性能,具备支持跨地域、去中心、高并发、多副本强一致、高可用、高可扩展等特性;目前已经满分通过工信部信通院“分布式事务数据库”测试。

产品优势:思极有容数据库是完全兼容MySQL协议的分布式的数据库产品,对于需要分库分表的业务需求,无需业务做任何分布式改造,就像使用单机MySQL一样去处理更大的数据,更大的并发。思极有容数据库是由国网信产集团自主研发的分布式数据库,已经与ARM、飞腾、UOS等国产化体系完全兼容。

思极有容数据库数据库集群具备极强的可定制性,可以针对国网科技项目需求进行创新性定制开发,并且在数据库核心技术专利方面,信产集团思极有容团队有丰富的专利申请和论文发表经验,充分体现科技项目先进性和创新性。思极有容数据库数据库具有HTAP部署模式,可以同时支撑大并发的联机交易和复杂的大SQL查询,可以通过分层按需横向准线性扩展,不断满足系统事务交易负载和复杂查询负载的增长需求。

趋势价值分析1)分布式是趋势,但是技术门槛高,对研发,运维的水平要求高。2)思极有容数据库作为分布式解决方案对应用透明,研发人员精力集中在业务实现,而不是被分库分表耗费过多精力,从而提高效率,这是一个很有价值和意义的事情。

场景及核心特性:

适用场景1)事务交易场景,对数据 *** 作事务性要求高,对数据一致性要求高的场景2)大并发大数据量场景,针对海量数据库进行大并发的联机交易的场景3)业务规模持续快速增长,对数据库的存储与性能有较强扩展性需求的场景4)报表即席查询展现场景适用业务:支持交易、企业管理、办公、门户、生产控制等信息化业务系统构建。

思极有容数据库核心特性:1)数据强一致性。思极有容数据库数据库事务数据强一直,任何故障场景下确保集群数据不丢失,数据强一致,RPO为0。2)扩展性。思极有容数据库数据库基于sharding实现数据库横向高可扩展,数据库性能随集群节点扩展准线性提升。3)高可用性。思极有容数据库分布式数据库的目标是能够高度容错磁盘、机器、机架,甚至数据中心故障,在无需人工干预的情况下,可最小化故障的各种影响,确保4个9的高可用性4)成本。思极有容数据库数据库支持廉价PC服务器/虚拟环境部署,可以大幅降低数据库的持有成本。5)国产化。思极有容数据库数据库支持主流的国产CPU与国产OS平台,可以用于构建全栈国产化的解决方案。6)高性能。思极有容数据库数据库在3台国产鲲鹏服务器下可以跑出100万TPMC的性能。

和竞争对手相比的主要优势1)和传统国产数据库厂家,例如达梦、人大、神通等相比,思极有容数据库采用原生分布式架构,在集群扩展性和大规模部署后集群性能方面有较大优势;同时思极有容数据库完全兼容和继承MySQL生态,非常的易用易适配,可以无缝衔接大量第三方数据处理组件,有巨大的生态优势。2)和开源数据库MySQL/PostgreSQL相比,思极有容数据库具备强大的扩展能力和准线性的性能提升优势,在数据存储容量、事务吞吐性能、数据库原生高可用方面具备碾压优势。3)和新兴分布式数据库厂家,例如阿里DRDS、腾讯TDSQL等相比,思极有容数据库具备更加完备的SQL语法支持,具备更加强大的事务吞吐性能,对应用适配更加友好。

分布式数据库系统分布式数据库系统有两种:一种是物理上分布的,但逻辑上却是集中的。这种分布式数据库只适宜用途比较单一的、不大的单位或部门。另一种分布式数据库系统在物理上和逻辑上都是分布的,也就是所谓联邦式分布数据库系统。由于组成联邦的各个子数据库系统是相对“自治”的,这种系统可以容纳多种不同用途的、差异较大的数据库,比较适宜于大范围内数据库的集成。

----- ----

分布式数据库系统(DDBS)包含分布式数据库管理系统(DDBMS)和分布式数据库(DDB)。在分布式数据库系统中,一个应用程序可以对数据库进行透明 *** 作,数据库中的数据分别在不同的局部数据库中存储、由不同的 DBMS进行管理、在不同的机器上运行、由不同的 *** 作系统支持、被不同的通信网络连接在一起。

一个分布式数据库在逻辑上是一个统一的整体,在物理上则是分别存储在不同的物理节点上。一个应用程序通过网络的连接可以访问分布在不同地理位置的数据库。它的分布性表现在数据库中的数据不是存储在同一场地。 更确切地讲,不存储在同一计算机的存储设备上。 这就是与集中式数据库的区别。从用户的角度看,一个分布式数据库系统在逻辑上和集中式数据库系统一样,用户可以在任何一个场地执行全局应用。就好那些数据是存储在同一台计算机上,有单个数据库管理系统(DBMS)管理一样,用户并没有什么感觉不一样。

分布式数据库系统是在集中式数据库系统的基础上发展起来的,是计算机技术和网络技术结合的产物。分布式数据库系统适合于单位分散的部门,允许各个部门将其常用的数据存储在本地,实施就地存放本地使用,从而提高响应速度,降低通信费用。分布式数据库系统与集中式数据库系统相比具有可扩展性,通过增加适当的数据冗余,提高系统的可靠性。在集中式数据库中,尽量减少冗余度是系统目标之一.其原因是,冗余数据浪费存储空间,而且容易造成各副本之间的不一致性.而为了保证数据的一致性,系统要付出一定的维护代价.减少冗余度的目标是用数据共享来达到的。而在分布式数据库中却希望增加冗余数据,在不同的场地存储同一数据的多个副本,其原因是:①.提高系统的可靠性、可用性当某一场地出现故障时,系统可以对另一场地上的相同副本进行 *** 作,不会因一处故障而造成整个系统的瘫痪。②.提高系统性能系统可以根据距离选择离用户最近的数据副本进行 *** 作,减少通信代价,改善整个系统的性能。

分布式数据库具有以下几个特点:

(1)、数据独立性与位置透明性。数据独立性是数据库方法追求的主要目标之一,分布透明性指用户不必关心数据的逻辑分区,不必关心数据物理位置分布的细节,也不必关心重复副本(冗余数据)的一致性问题,同时也不必关心局部场地上数据库支持哪种数据模型.分布透明性的优点是很明显的.有了分布透明性,用户的应用程序书写起来就如同数据没有分布一样.当数据从一个场地移到另一个场地时不必改写应用程序.当增加某些数据的重复副本时也不必改写应用程序.数据分布的信息由系统存储在数据字典中.用户对非本地数据的访问请求由系统根据数据字典予以解释、转换、传送.

(2)、集中和节点自治相结合。数据库是用户共享的资源.在集中式数据库中,为了保证数据库的安全性和完整性,对共享数据库的控制是集中的,并设有DBA负责监督和维护系统的正常运行.在分布式数据库中,数据的共享有两个层次:一是局部共享,即在局部数据库中存储局部场地上各用户的共享数据.这些数据是本场地用户常用的.二是全局共享,即在分布式数据库的各个场地也存储可供网中其它场地的用户共享的数据,支持系统中的全局应用.因此,相应的控制结构也具有两个层次:集中和自治.分布式数据库系统常常采用集中和自治相结合的控制结构,各局部的DBMS可以独立地管理局部数据库,具有自治的功能.同时,系统又设有集中控制机制,协调各局部DBMS的工作,执行全局应用。当然,不同的系统集中和自治的程度不尽相同.有些系统高度自治,连全局应用事务的协调也由局部DBMS、局部DBA共同承担而不要集中控制,不设全局DBA,有些系统则集中控制程度较高,场地自治功能较弱。

(3)、支持全局数据库的一致性和和可恢复性。分布式数据库中各局部数据库应满足集中式数据库的一致性、可串行性和可恢复性。除此以外还应保证数据库的全局一致性、并行 *** 作的可串行性和系统的全局可恢复性。这是因为全局应用要涉及两个以上结点的数据.因此在分布式数据库系统中一个业务可能由不同场地上的 多个 *** 作组成.例如, 银行转帐业务包括两个结点上的更新 *** 作。这样,当其中某一个结点出现故障 *** 作失败后如何使全局业务滚回呢?如何使另一个结点撤销已执行的 *** 作(若 *** 作已完成或完成一部分)或者不必再执行业务的其它 *** 作(若 *** 作尚没执行)?这些技术要比集中式数据库复杂和困难得多,分布式数据库系统必须解决这些问题.

(4)、复制透明性。用户不用关心数据库在网络中各个节点的复制情况,被复制的数据的更新都由系统自动完成。在分布式数据库系统中,可以把一个场地的数据复制到其他场地存放,应用程序可以使用复制到本地的数据在本地完成分布式 *** 作,避免通过网络传输数据,提高了系统的运行和查询效率。但是对于复制数据的更新 *** 作,就要涉及到对所有复制数据的更新。

(5)、易于扩展性。在大多数网络环境中,单个数据库服务器最终会不满足使用。如果服务器软件支持透明的水平扩展,那么就可以增加多个服务器来进一步分布数据和分担处理任务。

分布式数据库的优点:

(1)具有灵活的体系结构 。

(2)适应分布式的管理和控制机构。

(3)经济性能优越 。

(4)系统的可靠性高、可用性好 。

(5)局部应用的响应速度快。

(6)可扩展性好,易于集成现有系统。

分布式数据库的缺点:

(1)系统开销大,主要花在通信部分。

(2)复杂的存取结构,原来在集中式系统中有效存取数据的技术,在分成式系统中都不再适用。

(3)数据的安全生和保密性较难处理。

分布式数据库系统的目标

分布式数据库系统的目标,也就是研制分布式数据库系统的目的、动机,主要包括技术和组织两方面的目标.

1.适应部门分布的组织结构,降低费用。

使用数据库的单位在组织上常常是分布的(如分为部门、科室、车间等等),在地理上也是分布的.分布式数据库系统的结构符合部门分布的组织结构,允许各个部门对自己常用的数据存储在本地,在本地录入、查询、维护,实行局部控制.由于计算机资源靠近用户,因而可以降低通信代价,提高响应速度,使这些部门使用数据库更方便更经济。

2.提高系统的可靠性和可用性。

改善系统的可靠性和可用性是分布式数据库的主要目标.将数据分布于多个场地,并增加适当的冗余度可以提供更好的可靠性.一些可靠性要求较高的系统,这一点尤其重要.因为一个地出了故障不会引起整个系统崩溃.因为故障场地的用户可以通过其它场地进入系统.而其它场地的用户可以由系统自动选择存取路径,避开故障场地,利用其它数据副本执行 *** 作,不影响业务的正常运行.

3.充分利用数据库资源,提高现有集中式数据库的利用率

当在一个大企业或大部门中已建成了若干个数据库之后,为了利用相互的资源,为了开发全局应用,就要研制分布式数据库系统.这种情况可称为自底向上的建立分布式系统.这种方法虽然也要对各现存的局部数据库系统做某些改动、重构,但比起把这些数据库集中起来重建一个集中式数据库,则无论从经济上还是从组织上考虑,分布式数据库均是较好的选择.

4.逐步扩展处理能力和系统规模

当一个单位规模扩大要增加新的部门(如银行系统增加新的分行,工厂增加新的科室、车间)时,分布式数据库系统的结构为扩展系统的处理能力提供了较好的途径:在分布式数据库系统中增加一个新的结点.这样做比在集中式系统中扩大系统规模要方便、灵活、经济得多。

在集中式系统中为了扩大规模常用的方法有两种:一种是在开始设计时留有较大的余地.这容易造成浪费,而且由于预测困难,设计结果仍可能不适应情况的变化.另一种方法是系统升级,这会影响现有应用的正常运行.并且当升级涉及不兼容的硬件或系统软件有了重大修改而要相应地修改已开发的应用软件时,升级的代价就十分昂贵而常常使得升级的方法不可行.分布式数据库系统能方便地把一个新的结点纳入系统,不影响现有系统的结构和系统的正常运行,提供了逐渐扩展系统能力的较好途径,有时甚至是唯一的途径。

①数据库系统与应用 赵致格编著 清华大学出版社p 260

②数据库原理及应用 张晋连 编著 电子工业出版社P13

数据库集群,顾名思义,就是利用至少两台或者多台数据库服务器,构成一个虚拟单一数据库逻辑映像,像单数据库系统那样,向客户端提供透明的数据服务。关键是两台或者多台数据库服务器,如果只有一台数据库服务器是不能称其为集群的。集群向客户端提供的服务与单机系统向客户端提供的服务,从通讯协议上保持二进制兼容。数据库集群往往是同构的系统,要求集群各节点都具有相同的 *** 作系统和数据库系统版本,甚至补丁包的版本也要求保持一致。

在使用Elasticsearch搜索时,如果需要召回大量数据,可以考虑以下几种方法:

1 使用分页技术:分页技术可以有效地减少每次搜索的数据量,使得搜索过程变得更快。

2 使用索引:索引可以有效地加快搜索速度,减少搜索时间。

3 使用搜索聚合:搜索聚合可以有效地减少搜索时要搜索的数据量,使得搜索变得更快。

4 使用缓存:缓存可以有效地减少搜索时要搜索的数据量,使得搜索变得更快。

5 使用高亮技术:高亮技术可以有效地减少搜索时要搜索的数据量,使得搜索变得更快。

以下内容转载自徐汉彬大牛的博客 亿级Web系统搭建——单机到分布式集群 

当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题。为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制。在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决。

Web负载均衡 

Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要。

负载均衡的策略有很多,我们从简单的讲起哈。

1 >

当用户发来请求的时候,Web服务器通过修改>

这个重定向非常容易实现,并且可以自定义各种策略。但是,它在大规模访问量下,性能不佳。而且,给用户的体验也不好,实际请求发生重定向,增加了网络延时。

2 反向代理负载均衡

反向代理服务的核心工作主要是转发>

Nginx是一种非常灵活的反向代理软件,可以自由定制化转发策略,分配服务器流量的权重等。反向代理中,常见的一个问题,就是Web服务器存储的session数据,因为一般负载均衡的策略都是随机分配请求的。同一个登录用户的请求,无法保证一定分配到相同的Web机器上,会导致无法找到session的问题。

解决方案主要有两种:

1 配置反向代理的转发规则,让同一个用户的请求一定落到同一台机器上(通过分析cookie),复杂的转发规则将会消耗更多的CPU,也增加了代理服务器的负担。

2 将session这类的信息,专门用某个独立服务来存储,例如redis/memchache,这个方案是比较推荐的。

反向代理服务,也是可以开启缓存的,如果开启了,会增加反向代理的负担,需要谨慎使用。这种负载均衡策略实现和部署非常简单,而且性能表现也比较好。但是,它有“单点故障”的问题,如果挂了,会带来很多的麻烦。而且,到了后期Web服务器继续增加,它本身可能成为系统的瓶颈。

3 IP负载均衡

IP负载均衡服务是工作在网络层(修改IP)和传输层(修改端口,第四层),比起工作在应用层(第七层)性能要高出非常多。原理是,他是对IP层的数据包的IP地址和端口信息进行修改,达到负载均衡的目的。这种方式,也被称为“四层负载均衡”。常见的负载均衡方式,是LVS(Linux Virtual Server,Linux虚拟服务),通过IPVS(IP Virtual Server,IP虚拟服务)来实现。

在负载均衡服务器收到客户端的IP包的时候,会修改IP包的目标IP地址或端口,然后原封不动地投递到内部网络中,数据包会流入到实际Web服务器。实际服务器处理完成后,又会将数据包投递回给负载均衡服务器,它再修改目标IP地址为用户IP地址,最终回到客户端。

上述的方式叫LVS-NAT,除此之外,还有LVS-RD(直接路由),LVS-TUN(IP隧道),三者之间都属于LVS的方式,但是有一定的区别,篇幅问题,不赘叙。

IP负载均衡的性能要高出Nginx的反向代理很多,它只处理到传输层为止的数据包,并不做进一步的组包,然后直接转发给实际服务器。不过,它的配置和搭建比较复杂。

4 DNS负载均衡

DNS(Domain Name System)负责域名解析的服务,域名url实际上是服务器的别名,实际映射是一个IP地址,解析过程,就是DNS完成域名到IP的映射。而一个域名是可以配置成对应多个IP的。因此,DNS也就可以作为负载均衡服务。

这种负载均衡策略,配置简单,性能极佳。但是,不能自由定义规则,而且,变更被映射的IP或者机器故障时很麻烦,还存在DNS生效延迟的问题。 

5 DNS/GSLB负载均衡

我们常用的CDN(Content Delivery Network,内容分发网络)实现方式,其实就是在同一个域名映射为多IP的基础上更进一步,通过GSLB(Global Server Load Balance,全局负载均衡)按照指定规则映射域名的IP。一般情况下都是按照地理位置,将离用户近的IP返回给用户,减少网络传输中的路由节点之间的跳跃消耗。

“向上寻找”,实际过程是LDNS(Local DNS)先向根域名服务(Root Name Server)获取到顶级根的Name Server(例如com的),然后得到指定域名的授权DNS,然后再获得实际服务器IP。

CDN在Web系统中,一般情况下是用来解决大小较大的静态资源(html/Js/Css/等)的加载问题,让这些比较依赖网络下载的内容,尽可能离用户更近,提升用户体验。

例如,我访问了一张imgcachegtimgcn上的(腾讯的自建CDN,不使用qqcom域名的原因是防止>

这种方式,和前面的DNS负载均衡一样,不仅性能极佳,而且支持配置多种策略。但是,搭建和维护成本非常高。互联网一线公司,会自建CDN服务,中小型公司一般使用第三方提供的CDN。

Web系统的缓存机制的建立和优化

刚刚我们讲完了Web系统的外部网络环境,现在我们开始关注我们Web系统自身的性能问题。我们的Web站点随着访问量的上升,会遇到很多的挑战,解决这些问题不仅仅是扩容机器这么简单,建立和使用合适的缓存机制才是根本。

最开始,我们的Web系统架构可能是这样的,每个环节,都可能只有1台机器。

我们从最根本的数据存储开始看哈。

一、 MySQL数据库内部缓存使用

MySQL的缓存机制,就从先从MySQL内部开始,下面的内容将以最常见的InnoDB存储引擎为主。

1 建立恰当的索引

最简单的是建立索引,索引在表数据比较大的时候,起到快速检索数据的作用,但是成本也是有的。首先,占用了一定的磁盘空间,其中组合索引最突出,使用需要谨慎,它产生的索引甚至会比源数据更大。其次,建立索引之后的数据insert/update/delete等 *** 作,因为需要更新原来的索引,耗时会增加。当然,实际上我们的系统从总体来说,是以select查询 *** 作居多,因此,索引的使用仍然对系统性能有大幅提升的作用。

2 数据库连接线程池缓存

如果,每一个数据库 *** 作请求都需要创建和销毁连接的话,对数据库来说,无疑也是一种巨大的开销。为了减少这类型的开销,可以在MySQL中配置thread_cache_size来表示保留多少线程用于复用。线程不够的时候,再创建,空闲过多的时候,则销毁。

其实,还有更为激进一点的做法,使用pconnect(数据库长连接),线程一旦创建在很长时间内都保持着。但是,在访问量比较大,机器比较多的情况下,这种用法很可能会导致“数据库连接数耗尽”,因为建立连接并不回收,最终达到数据库的max_connections(最大连接数)。因此,长连接的用法通常需要在CGI和MySQL之间实现一个“连接池”服务,控制CGI机器“盲目”创建连接数。

建立数据库连接池服务,有很多实现的方式,PHP的话,我推荐使用swoole(PHP的一个网络通讯拓展)来实现。

3 Innodb缓存设置(innodb_buffer_pool_size)

innodb_buffer_pool_size这是个用来保存索引和数据的内存缓存区,如果机器是MySQL独占的机器,一般推荐为机器物理内存的80%。在取表数据的场景中,它可以减少磁盘IO。一般来说,这个值设置越大,cache命中率会越高。

4 分库/分表/分区。

MySQL数据库表一般承受数据量在百万级别,再往上增长,各项性能将会出现大幅度下降,因此,当我们预见数据量会超过这个量级的时候,建议进行分库/分表/分区等 *** 作。最好的做法,是服务在搭建之初就设计为分库分表的存储模式,从根本上杜绝中后期的风险。不过,会牺牲一些便利性,例如列表式的查询,同时,也增加了维护的复杂度。不过,到了数据量千万级别或者以上的时候,我们会发现,它们都是值得的。 

二、 MySQL数据库多台服务搭建

1台MySQL机器,实际上是高风险的单点,因为如果它挂了,我们Web服务就不可用了。而且,随着Web系统访问量继续增加,终于有一天,我们发现1台MySQL服务器无法支撑下去,我们开始需要使用更多的MySQL机器。当引入多台MySQL机器的时候,很多新的问题又将产生。

1 建立MySQL主从,从库作为备份

这种做法纯粹为了解决“单点故障”的问题,在主库出故障的时候,切换到从库。不过,这种做法实际上有点浪费资源,因为从库实际上被闲着了。

2 MySQL读写分离,主库写,从库读。

两台数据库做读写分离,主库负责写入类的 *** 作,从库负责读的 *** 作。并且,如果主库发生故障,仍然不影响读的 *** 作,同时也可以将全部读写都临时切换到从库中(需要注意流量,可能会因为流量过大,把从库也拖垮)。

3 主主互备。

两台MySQL之间互为彼此的从库,同时又是主库。这种方案,既做到了访问量的压力分流,同时也解决了“单点故障”问题。任何一台故障,都还有另外一套可供使用的服务。

不过,这种方案,只能用在两台机器的场景。如果业务拓展还是很快的话,可以选择将业务分离,建立多个主主互备。

三、 MySQL数据库机器之间的数据同步

每当我们解决一个问题,新的问题必然诞生在旧的解决方案上。当我们有多台MySQL,在业务高峰期,很可能出现两个库之间的数据有延迟的场景。并且,网络和机器负载等,也会影响数据同步的延迟。我们曾经遇到过,在日访问量接近1亿的特殊场景下,出现,从库数据需要很多天才能同步追上主库的数据。这种场景下,从库基本失去效用了。

于是,解决同步问题,就是我们下一步需要关注的点。

1 MySQL自带多线程同步

MySQL56开始支持主库和从库数据同步,走多线程。但是,限制也是比较明显的,只能以库为单位。MySQL数据同步是通过binlog日志,主库写入到binlog日志的 *** 作,是具有顺序的,尤其当SQL *** 作中含有对于表结构的修改等 *** 作,对于后续的SQL语句 *** 作是有影响的。因此,从库同步数据,必须走单进程。

2 自己实现解析binlog,多线程写入。

以数据库的表为单位,解析binlog多张表同时做数据同步。这样做的话,的确能够加快数据同步的效率,但是,如果表和表之间存在结构关系或者数据依赖的话,则同样存在写入顺序的问题。这种方式,可用于一些比较稳定并且相对独立的数据表。

国内一线互联网公司,大部分都是通过这种方式,来加快数据同步效率。还有更为激进的做法,是直接解析binlog,忽略以表为单位,直接写入。但是这种做法,实现复杂,使用范围就更受到限制,只能用于一些场景特殊的数据库中(没有表结构变更,表和表之间没有数据依赖等特殊表)。 

四、 在Web服务器和数据库之间建立缓存

实际上,解决大访问量的问题,不能仅仅着眼于数据库层面。根据“二八定律”,80%的请求只关注在20%的热点数据上。因此,我们应该建立Web服务器和数据库之间的缓存机制。这种机制,可以用磁盘作为缓存,也可以用内存缓存的方式。通过它们,将大部分的热点数据查询,阻挡在数据库之前。

1 页面静态化

用户访问网站的某个页面,页面上的大部分内容在很长一段时间内,可能都是没有变化的。例如一篇新闻报道,一旦发布几乎是不会修改内容的。这样的话,通过CGI生成的静态html页面缓存到Web服务器的磁盘本地。除了第一次,是通过动态CGI查询数据库获取之外,之后都直接将本地磁盘文件返回给用户。

在Web系统规模比较小的时候,这种做法看似完美。但是,一旦Web系统规模变大,例如当我有100台的Web服务器的时候。那样这些磁盘文件,将会有100份,这个是资源浪费,也不好维护。这个时候有人会想,可以集中一台服务器存起来,呵呵,不如看看下面一种缓存方式吧,它就是这样做的。

2 单台内存缓存

通过页面静态化的例子中,我们可以知道将“缓存”搭建在Web机器本机是不好维护的,会带来更多问题(实际上,通过PHP的apc拓展,可通过Key/value *** 作Web服务器的本机内存)。因此,我们选择搭建的内存缓存服务,也必须是一个独立的服务。

内存缓存的选择,主要有redis/memcache。从性能上说,两者差别不大,从功能丰富程度上说,Redis更胜一筹。

3 内存缓存集群

当我们搭建单台内存缓存完毕,我们又会面临单点故障的问题,因此,我们必须将它变成一个集群。简单的做法,是给他增加一个slave作为备份机器。但是,如果请求量真的很多,我们发现cache命中率不高,需要更多的机器内存呢?因此,我们更建议将它配置成一个集群。例如,类似redis cluster。

Redis cluster集群内的Redis互为多组主从,同时每个节点都可以接受请求,在拓展集群的时候比较方便。客户端可以向任意一个节点发送请求,如果是它的“负责”的内容,则直接返回内容。否则,查找实际负责Redis节点,然后将地址告知客户端,客户端重新请求。

对于使用缓存服务的客户端来说,这一切是透明的。

内存缓存服务在切换的时候,是有一定风险的。从A集群切换到B集群的过程中,必须保证B集群提前做好“预热”(B集群的内存中的热点数据,应该尽量与A集群相同,否则,切换的一瞬间大量请求内容,在B集群的内存缓存中查找不到,流量直接冲击后端的数据库服务,很可能导致数据库宕机)。

4 减少数据库“写”

上面的机制,都实现减少数据库的“读”的 *** 作,但是,写的 *** 作也是一个大的压力。写的 *** 作,虽然无法减少,但是可以通过合并请求,来起到减轻压力的效果。这个时候,我们就需要在内存缓存集群和数据库集群之间,建立一个修改同步机制。

先将修改请求生效在cache中,让外界查询显示正常,然后将这些sql修改放入到一个队列中存储起来,队列满或者每隔一段时间,合并为一个请求到数据库中更新数据库。

除了上述通过改变系统架构的方式提升写的性能外,MySQL本身也可以通过配置参数innodb_flush_log_at_trx_commit来调整写入磁盘的策略。如果机器成本允许,从硬件层面解决问题,可以选择老一点的RAID(Redundant Arrays of independent Disks,磁盘列阵)或者比较新的SSD(Solid State Drives,固态硬盘)。

5 NoSQL存储

不管数据库的读还是写,当流量再进一步上涨,终会达到“人力有穷时”的场景。继续加机器的成本比较高,并且不一定可以真正解决问题的时候。这个时候,部分核心数据,就可以考虑使用NoSQL的数据库。NoSQL存储,大部分都是采用key-value的方式,这里比较推荐使用上面介绍过Redis,Redis本身是一个内存cache,同时也可以当做一个存储来使用,让它直接将数据落地到磁盘。

这样的话,我们就将数据库中某些被频繁读写的数据,分离出来,放在我们新搭建的Redis存储集群中,又进一步减轻原来MySQL数据库的压力,同时因为Redis本身是个内存级别的Cache,读写的性能都会大幅度提升。

国内一线互联网公司,架构上采用的解决方案很多是类似于上述方案,不过,使用的cache服务却不一定是Redis,他们会有更丰富的其他选择,甚至根据自身业务特点开发出自己的NoSQL服务。

6 空节点查询问题

当我们搭建完前面所说的全部服务,认为Web系统已经很强的时候。我们还是那句话,新的问题还是会来的。空节点查询,是指那些数据库中根本不存在的数据请求。例如,我请求查询一个不存在人员信息,系统会从各级缓存逐级查找,最后查到到数据库本身,然后才得出查找不到的结论,返回给前端。因为各级cache对它无效,这个请求是非常消耗系统资源的,而如果大量的空节点查询,是可以冲击到系统服务的。

在我曾经的工作经历中,曾深受其害。因此,为了维护Web系统的稳定性,设计适当的空节点过滤机制,非常有必要。

我们当时采用的方式,就是设计一张简单的记录映射表。将存在的记录存储起来,放入到一台内存cache中,这样的话,如果还有空节点查询,则在缓存这一层就被阻挡了。

异地部署(地理分布式)

完成了上述架构建设之后,我们的系统是否就已经足够强大了呢?答案当然是否定的哈,优化是无极限的。Web系统虽然表面上看,似乎比较强大了,但是给予用户的体验却不一定是最好的。因为东北的同学,访问深圳的一个网站服务,他还是会感到一些网络距离上的慢。这个时候,我们就需要做异地部署,让Web系统离用户更近。

一、 核心集中与节点分散

有玩过大型网游的同学都会知道,网游是有很多个区的,一般都是按照地域来分,例如广东专区,北京专区。如果一个在广东的玩家,去北京专区玩,那么他会感觉明显比在广东专区卡。实际上,这些大区的名称就已经说明了,它的服务器所在地,所以,广东的玩家去连接地处北京的服务器,网络当然会比较慢。

当一个系统和服务足够大的时候,就必须开始考虑异地部署的问题了。让你的服务,尽可能离用户更近。我们前面已经提到了Web的静态资源,可以存放在CDN上,然后通过DNS/GSLB的方式,让静态资源的分散“全国各地”。但是,CDN只解决的静态资源的问题,没有解决后端庞大的系统服务还只集中在某个固定城市的问题。

这个时候,异地部署就开始了。异地部署一般遵循:核心集中,节点分散。

· 核心集中:实际部署过程中,总有一部分的数据和服务存在不可部署多套,或者部署多套成本巨大。而对于这些服务和数据,就仍然维持一套,而部署地点选择一个地域比较中心的地方,通过网络内部专线来和各个节点通讯。

· 节点分散:将一些服务部署为多套,分布在各个城市节点,让用户请求尽可能选择近的节点访问服务。

例如,我们选择在上海部署为核心节点,北京,深圳,武汉,上海为分散节点(上海自己本身也是一个分散节点)。我们的服务架构如图:

需要补充一下的是,上图中上海节点和核心节点是同处于一个机房的,其他分散节点各自独立机房。 

国内有很多大型网游,都是大致遵循上述架构。它们会把数据量不大的用户核心账号等放在核心节点,而大部分的网游数据,例如装备、任务等数据和服务放在地区节点里。当然,核心节点和地域节点之间,也有缓存机制。 

二、 节点容灾和过载保护

节点容灾是指,某个节点如果发生故障时,我们需要建立一个机制去保证服务仍然可用。毫无疑问,这里比较常见的容灾方式,是切换到附近城市节点。假如系统的天津节点发生故障,那么我们就将网络流量切换到附近的北京节点上。考虑到负载均衡,可能需要同时将流量切换到附近的几个地域节点。另一方面,核心节点自身也是需要自己做好容灾和备份的,核心节点一旦故障,就会影响全国服务。

过载保护,指的是一个节点已经达到最大容量,无法继续接接受更多请求了,系统必须有一个保护的机制。一个服务已经满负载,还继续接受新的请求,结果很可能就是宕机,影响整个节点的服务,为了至少保障大部分用户的正常使用,过载保护是必要的。

解决过载保护,一般2个方向:

· 拒绝服务,检测到满负载之后,就不再接受新的连接请求。例如网游登入中的排队。

· 分流到其他节点。这种的话,系统实现更为复杂,又涉及到负载均衡的问题。

小结

Web系统会随着访问规模的增长,渐渐地从1台服务器可以满足需求,一直成长为“庞然大物”的大集群。而这个Web系统变大的过程,实际上就是我们解决问题的过程。在不同的阶段,解决不同的问题,而新的问题又诞生在旧的解决方案之上。

系统的优化是没有极限的,软件和系统架构也一直在快速发展,新的方案解决了老的问题,同时也带来新的挑战。

数据库节点:

单节点就是数据库软件安装在一台服务器上。

双节点就是数据库软件安装在两台服务器上,可能是为高可用,或者负载均衡来考虑的,比如oracle 的RAC,一般就是双节点。

多节点就是数据库软件安装在多台服务器上,这样形成更大的集群,其中每一台安装有数据库软件的服务器就叫一个节点。

比较一下网络节点的概念,你就清楚了:

每一台连上网络的计算机都是一个网络节点

整个网络就是由这许许多多的网络节点组成的

以上就是关于数据库集群是什么全部的内容,包括:数据库集群是什么、谁能说下思极有容数据库、数据库中的集群和F5等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9698575.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)