1WEB开发
在国内,豆瓣一开始就使用Python作为web开发基础语言,知乎的整个架构也是基于Python语言,这使得web开发这块在国内发展的很不错。
尽管目前Python并不是做Web开发的首选,但一直都占有不可忽视的一席。Python中有各类Web框架,无论是简单而可以自由搭配的微框架还是全功能的大型MVC框架都一应俱全,这在需要敏捷开发的Web项目中也是十分具有优势的。广泛使用(或曾经广泛使用)Python提供的大型Web服务包括知乎、豆瓣、Dropbox等网站。加之Python本身的“胶水”特性,很容易实现在需要大规模性能级计算时整合其它语言,同时保留Web开发时的轻便快捷。
除此之外,Python中还有大量“开箱即用”的模块,用于与各种其它网站的对接等相关功能。如果希望开发个微信公众号相关功能,wechat-sdk/weixin-python等包,能够使你几乎完全不用管文档中提及的各种服务器交互细节,专注于功能实现即能完成开发。
目前,国内的Python web开发主要有两个技术栈:
(1)Django
Django是一个高级的敏捷web开发框架,如果学会了,撸一个网站很快。当然如果纯粹比撸网站的速度,基于ruby的Ruby on rails显然更快,但是Django有一个优势就是性能优秀,更适合国内网站的应用场景。国外的著名社区Pinterest早期也是基于Django开发的,承受了用户快速增长的冲击。所以说如果你想快速开发一个网站,还能兼顾APP客户端的API调用需求,Django是可以信赖的。
(2)Flask
相对于Django,Flask则是一个轻量级的web框架,Flask的最大的优势是性能优越,适合配合手机客户端开发后台API服务。国内基于Flask的Restful API服务这快很火,也是需求最大的。知名的比如百度、网易、小米、陌陌等等很多公司都有基于Flask的应用部署。当然,如果你想做一个传统的web网站,还是建议使用Django,Flask的优势是后端、API,不适合构建全功能网站。
2网络爬虫
网络爬虫是Python比较常用的一个场景,国际上,google在早期大量地使用Python语言作为网络爬虫的基础,带动了整个Python语言的应用发展。以前国内很多人用采集器搜刮网上的内容,现在用Python收集网上的信息比以前容易很多了。
Python在这个方面有许多工具上的积累,无论是用于模拟>
3人工智能与机器学习
人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。现在释放出来的几个非常有影响力的AI框架,大多是Python的实现,为什么呢?
因为Python足够动态、具有足够性能,这是AI技术所需要的技术特点。比如基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。
早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。
而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。
值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。
4数据分析处理
数据分析处理方面,Python有很完备的生态环境。“大数据”分析中涉及到的分布式计算、数据可视化、数据库 *** 作等,Python中都有成熟的模块可以选择完成其功能。对于Hadoop-MapReduce和Spark,都可以直接使用Python完成计算逻辑。这无论对于数据科学家还是对于数据工程师而言都是十分便利的。
5服务器运维及其它小工具
Python对于服务器运维而言也有十分重要的用途。由于目前几乎所有Linux发行版中都自带了Python解释器,使用Python脚本进行批量化的文件部署和运行调整都成了Linux服务器上很不错的选择。Python中也包含许多方便的工具,从调控ssh/sftp用的paramiko,到监控服务用的supervisor,再到bazel等构建工具,甚至conan等用于C++的包管理工具,Python提供了全方位的工具集合,而在这基础上,结合Web,开发方便运维的工具会变得十分简单。
更有意思的是,Python社区的开发者们还制作了诸如itchat这样的开发工具包,你大可以用微信来管理服务器或是各种服务的运行。想想看,一个微信机器人,能够在出现异常时,又或者每天固定时刻汇报服务器或是程序运行情况,甚至包含用matplotlib/seaborn绘制的图表,一目了然,而你对它发上简简单单一句话,即可完成对服务器的调整。
想学的童鞋可以加企鹅裙前三位是227,中间是435,后三位是450可以 视频资料免费分享交流经验和讲解行情
6桌面程序
Python也可以用于桌面软件开发(如sublime text等),甚至移动端开发(参看kivy)。Python简洁方便,各种工具包齐全的环境,能大幅度减少开发者的负担。著名的UI框架QT有Python语言的实现版本PyQT。Python简单易用的特性加上QT的优雅,可以很轻松的开发界面复杂的桌面程序,并且能轻松实现跨平台特性。
7多媒体应用
可以用Python里面的PIL、Piddle、ReportLab 等模块对图象、声音、视频、动画等进行处理,还可以用Python生成动态图表和统计分析图表。另外,还可以利用PyOpenGl模块非常快速有效的编写出三维场景。
当我知道可以做这些之后,我特别想会。因为论文查阅、答案确认查询;想知道豆瓣8分以上**,或者穿越类的**、处理工资数据考核表等。
可以干什么
1、上学吧答案神器 主要实现的是无限制获取上学吧网站上的题目答案(绕过 IP 限制),并实现了自动识别验证码,只用输入某个题目的网址,即可一键获取答案,速度非常快。「想要哈哈,自己或者给孩子辅导作业必备啊?」
2、抓取某系统内全部学生姓名学号及选课信息
3、扫描研究生系统上的弱密码用户、模拟登录图书馆系统并自动续借
4、给钓鱼网站批量提交垃圾信息 经常会收到含有钓鱼网站链接的短信的,一般都是** QQ 密码的偏多,其实可以使用 Python 来批量给对方的服务器提交垃圾数据(需要先抓包),这样骗子看到信息之后就不知道哪些是真的哪些是假的了,说不定可以解救一部分填了密码的同学。
5、网易云音乐批量下载 可以批量下载网易云音乐热歌榜的歌曲,可以自己设定数量,速度非常快。
6、批量下载读者杂志某一期的全部文章
7、 获取城市PM25浓度和排名
8、爬取某网商品价格信息
你都用 Python 来做什么?
那Python 作为一种功能强大的编程语言,因其简单易学而受到很多开发者的青睐。那么,Python 的应用领域有哪些呢?
Python 的应用领域非常广泛,几乎所有大中型互联网企业都在使用 Python 完成各种各样的任务,例如国外的 Google、Youtube、Dropbox,国内的百度、新浪、搜狐、腾讯、阿里、网易、淘宝、知乎、豆瓣、汽车之家、美团等等。概括起来,Python 的应用领域主要有如下几个。
Web应用开发
Python 经常被用于 Web 开发,尽管目前 PHP、JS 依然是 Web 开发的主流语言,但 Python 上升势头更劲。尤其随着 Python 的 Web 开发框架逐渐成熟(比如 Django、flask、TurboGears、web2py 等等),程序员可以更轻松地开发和管理复杂的 Web 程序。例如,通过 mod_wsgi 模块,Apache 可以运行用 Python 编写的 Web 程序。Python 定义了 WSGI 标准应用接口来协调 >
图1用Python实现的豆瓣网
不仅如此,全球最大的视频网站 Youtube 以及 Dropbox(一款网络文件同步工具)也都是用 Python 开发的。
自动化运维
很多 *** 作系统中,Python 是标准的系统组件,大多数 Linux 发行版以及 NetBSD、OpenBSD 和 Mac OS X 都集成了 Python,可以在终端下直接运行 Python。有一些 Linux 发行版的安装器使用 Python 语言编写,例如 Ubuntu 的 Ubiquity 安装器、Red Hat Linux 和 Fedora 的 Anaconda 安装器等等。另外,Python 标准库中包含了多个可用来调用 *** 作系统功能的库。例如,通过 pywin32 这个软件包,我们能访问 Windows 的 COM 服务以及其他 Windows API;使用 IronPython,我们能够直接调用 Net Framework。通常情况下,Python 编写的系统管理脚本,无论是可读性,还是性能、代码重用度以及扩展性方面,都优于普通的 shell 脚本。
人工智能领域
人工智能是项目非常火的一个研究方向,如果要评选当前最热、工资最高的 IT 职位,那么人工智能领域的工程师最有话语权。而 Python 在人工智能领域内的机器学习、神经网络、深度学习等方面,都是主流的编程语言。可以这么说,基于大数据分析和深度学习发展而来的人工智能,其本质上已经无法离开 Python 的支持了,原因至少有以下几点:
目前世界上优秀的人工智能学习框架,比如 Google 的 TransorFlow(神经网络框架)、FaceBook 的 PyTorch(神经网络框架)以及开源社区的 Karas 神经网络库等,都是用 Python 实现的;微软的 CNTK(认知工具包)也完全支持 Python,并且该公司开发的 VS Code,也已经把 Python 作为第一级语言进行支持。Python 擅长进行科学计算和数据分析,支持各种数学运算,可以绘制出更高质量的 2D 和 3D 图像。总之,AI 时代的来临,使得 Python 从众多编程语言中脱颖而出,Python 作为 AI 时代头牌语言的位置,基本无人可撼动!最后,如果你的时间不是很紧张,并且又想快速的提高,最重要的是不怕吃苦,建议你可以价位@762459510 ,那个真的很不错,很多人进步都很快,需要你不怕吃苦哦!大家可以去添加上看一下~
网路爬虫
Python 语言很早就用来编写网络爬虫。Google 等搜索引擎公司大量地使用 Python 语言编写网络爬虫。从技术层面上将,Python 提供有很多服务于编写网络爬虫的工具,例如 urllib、Selenium 和 BeautifulSoup 等,还提供了一个网络爬虫框架 Scrapy。
科学计算
自 1997 年,NASA 就大量使用 Python 进行各种复杂的科学运算。并且,和其它解释型语言(如 shell、js、PHP)相比,Python 在数据分析、可视化方面有相当完善和优秀的库,例如 NumPy、SciPy、Matplotlib、pandas 等,这可以满足 Python 程序员编写科学计算程序。
游戏开发
很多游戏使用 C++ 编写图形显示等高性能模块,而使用 Python 或 Lua 编写游戏的逻辑。和 Python 相比,Lua 的功能更简单,体积更小;而 Python 则支持更多的特性和数据类型。比如说,国际上指明的游戏 Sid Meier's Civilization(文明,如图 2 所示)就是使用 Python 实现的。
图2Python开发的游戏
除此之外,Python 可以直接调用 Open GL 实现 3D 绘制,这是高性能游戏引擎的技术基础。事实上,有很多 Python 语言实现的游戏引擎,例如 Pygame、Pyglet 以及 Cocos 2d 等。以上也仅是介绍了 Python 应用领域的“冰山一角”,例如,还可以利用 Pygame 进行游戏编程;用 PIL 和其他的一些工具进行图像处理;用 PyRo 工具包进行机器人控制编程,等等。有兴趣的读者,可自行搜索资料进行详细了解。
制作电子捐赠证书生成系统的步骤如下:
第一步:准备所需的软件和硬件:电脑、软件设计工具(如Photoshop)、打印机等。
第二步:设计捐赠证书的样式和格式,根据需要添加以下内容:
1、捐赠证书的标题;
2、捐赠人的姓名;
3、捐赠证书的可用时间;
4、捐赠金额;
5、捐赠日期;
6、捐赠原因;
7、收件人的姓名;
8、捐赠机构的名称;
9、捐赠证书的背景等。
第三步:使用设计软件制作捐赠证书,完成捐赠证书的制作。
第四步:将打印的捐赠证书转换成PDF文件,用电子邮件发送给捐赠人,让他们可以在自己的电脑上查看和打印。
第五步:制作完成后,将捐赠证书上传到网站上,以便捐赠人可以在网上查看和打印捐赠证书。
第六步:将捐赠证书保存到数据库中,以便日后查询捐赠历史记录。
以上就是制作电子捐赠证书生成系统的步骤,经过以上步骤,就可以轻松地制作出一份优秀的电子捐赠证书。
常见的非关系型数据库有:1、mongodb;2、cassandra;3、redis;4、hbase;5、neo4j。其中mongodb是非常著名的NoSQL数据库,它是一个面向文档的开源数据库。
常见的几种非关系型数据库:
1、MongoDB
MongoDB是最著名的NoSQL数据库。它是一个面向文档的开源数据库。MongoDB是一个可伸缩和可访问的数据库。它在c++中。MongoDB同样可以用作文件系统。在MongoDB中,JavaScript可以作为查询语言使用。通过使用sharding MongoDB水平伸缩。它在流行的JavaScript框架中非常有用。
人们真的很享受分片、高级文本搜索、gridFS和map-reduce功能。惊人的性能和新特性使这个NoSQL数据库在我们的列表中名列第一。
特点:提供高性能;自动分片;运行在多个服务器上;支持主从复制;数据以JSON样式文档的形式存储;索引文档中的任何字段;由于数据被放置在碎片中,所以它具有自动负载平衡配置;支持正则表达式搜索;在失败的情况下易于管理。
优点:易于安装MongoDB;MongoDB Inc为客户提供专业支持;支持临时查询;高速数据库;无模式数据库;横向扩展数据库;性能非常高。
缺点:不支持连接;数据量大;嵌套文档是有限的;增加不必要的内存使用。
2、Cassandra
Cassandra是Facebook为收件箱搜索开发的。Cassandra是一个用于处理大量结构化数据的分布式数据存储系统。通常,这些数据分布在许多普通服务器上。您还可以添加数据存储容量,使您的服务保持在线,您可以轻松地完成这项任务。由于集群中的所有节点都是相同的,因此不需要处理复杂的配置。
Cassandra是用Java编写的。Cassandra查询语言(CQL)是查询Cassandra数据库的一种类似sql的语言。因此,Cassandra在最佳开源数据库中排名第二。Facebook、Twitter、思科(Cisco)、Rackspace、eBay、Twitter、Netflix等一些最大的公司都在使用Cassandra。
特点:线性可伸缩;;保持快速响应时间;支持原子性、一致性、隔离性和耐久性(ACID)等属性;使用Apache Hadoop支持MapReduce;分配数据的最大灵活性;高度可伸缩;点对点架构。
优点:高度可伸缩;无单点故障;Multi-DC复制;与其他基于JVM的应用程序紧密集成;更适合多数据中心部署、冗余、故障转移和灾难恢复。
缺点:对聚合的有限支持;不可预知的性能;不支持特别查询。
3、Redis
Redis是一个键值存储。此外,它是最著名的键值存储。Redis支持一些c++、PHP、Ruby、Python、Perl、Scala等等。Redis是用C语言编写的。此外,它是根据BSD授权的。
特点:自动故障转移;将其数据库完全保存在内存中;事务;Lua脚本;将数据复制到任意数量的从属服务器;钥匙的寿命有限;LRU驱逐钥匙;支持发布/订阅。
优点:支持多种数据类型;很容易安装;非常快(每秒执行约11万组,每秒执行约81000次); *** 作都是原子的;多用途工具(在许多用例中使用)。
缺点:不支持连接;存储过程所需的Lua知识;数据集必须很好地适应内存。
4、HBase
HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。
HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
5、neo4j
Neo4j被称为原生图数据库,因为它有效地实现了属性图模型,一直到存储层。这意味着数据完全按照白板的方式存储,数据库使用指针导航和遍历图。Neo4j有数据库的社区版和企业版。企业版包括Community Edition必须提供的所有功能,以及额外的企业需求,如备份、集群和故障转移功能。
特点:它支持唯一的约束;Neo4j支持完整的ACID(原子性、一致性、隔离性和持久性)规则;Java API: Cypher API和本机Java API;使用Apache Lucence索引;简单查询语言Neo4j CQL;包含用于执行CQL命令的UI: Neo4j Data Browser。
优点:容易检索其相邻节点或关系细节,无需连接或索引;易于学习Neo4j CQL查询语言命令;不需要复杂的连接来检索数据;非常容易地表示半结构化数据;大型企业实时应用程序的高可用性;简化的调优。
缺点:不支持分片
后端开发工作岗位主要包括以下几类:
Web 开发工程师:负责开发和维护网站后端系统,使用服务器端编程语言(如Java、Python等)和框架(如Spring、Django等)进行编码和开发。
数据库开发工程师:负责设计、开发和维护数据库系统,包括数据建模、优化、备份和恢复等工作。
云计算工程师:负责设计和实现基于云计算的后端架构,熟悉云计算基础设施(如AWS、Azure等)和云原生技术(如Docker、Kubernetes等)。
DevOps 工程师:负责设计和实现持续集成和持续交付(CI/CD)流程,自动化部署和测试,实现软件开发全流程的自动化和标准化。
安全工程师:负责保护后端系统的安全和可靠性,包括数据加密、身份验证、漏洞修补和安全审计等工作。
大数据工程师:负责设计和实现大数据平台和数据处理流程,熟悉大数据技术(如Hadoop、Spark、Hive等)和数据仓库架构。
游戏服务器开发工程师:负责设计和实现游戏服务器系统,处理游戏逻辑、数据存储和玩家交互等功能。
总之,后端开发工作岗位需要熟悉服务器端编程语言、数据库系统、网络通信和系统架构设计等技能,并且需要有良好的编程习惯和团队协作能力。
我主要学习的是HTML+CSS的过程:
学习版本以及使用软件
HTML语言版本可以从HTML5开始学起,主要使用的软件可以是DreamWeaver,HBuilder等软件,这些软件都是比较好且容易上手的开发软件,使用代码快捷键可以快速编写代码,且有语法识别家里,提示错误代码等。
学习方法
兴趣是最好的老师,如果只是强迫自己去学习,基本上很难去学进去,我刚开始学习的时候也是自己在网上找的视频,但是完全看不下去,可能是缺少督促等等,最后也是报的专门的培训班来进行学习的,但是如果自学的话,前期一定要实 *** ,只有实 *** 才会让你有学习下去的动力。经常用到的就是DIV+CSS这类的网页编辑方式,然后在一点一点的反复输入代码来 *** 作以及看效果,才能让你记忆更加牢固。
学习导入书籍
书籍网上有很多,具体看自己喜欢那种类型,基本上都是比较系统的讲解,这个就建议你自己挑选。
4HTML与CSS的区别
HTML
在你自己学习的过程中你就会知道,首先HTML是网页的标签方面,主要是关于内容显示功能,如段落标签:
<p>这是一段内容</p>
显示在浏览器中的效果:
CSS
CSS也叫做样式表,从名字上就知道CSS是控制样式的,可以嵌入在HTML标签内或者通过css文件进行外部引用,代码如下:
<p style="color:red; font-size:20px; background:yellow;">这是一段内容</>
显示在浏览器的效果:
5建议学习顺序
学习顺序建议建议先学习HTML,再学习CSS,这两个内容一般整体也叫XHTML,大部分的书籍中也会有设定好的学习顺序。
虽然说自学的话也比较简单,但是毕竟是代码方面的,还是建议去报个班系统的学习一下还是比较好的,我之前在杭州这边就是在北大青鸟学习的,感觉还是比较不错的,学习的较为系统和全面,并且还有具体的实 *** 教程。
以上就是关于学python可以做什么全部的内容,包括:学python可以做什么、你都用Python 来做什么、如何制作电子捐赠证书生成系统等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)