决策树是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。
在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy=系统的凌乱程度,使用算法ID3,C45和C50生成树算法使用熵。这一度量是基于信息学理论中熵的概念。决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。
分类树(决策树):
是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。
决策树的剪枝:
剪枝是决策树停止分支的方法之一,剪枝有分预先剪枝和后剪枝两种。预先剪枝是在树的生长过程中设定一个指标,当达到该指标时就停止生长,这样做容易产生“视界局限”,就是一旦停止分支,使得节点N成为叶节点,就断绝了其后继节点进行“好”的分支 *** 作的任何可能性。
不严格的说这些已停止的分支会误导学习算法,导致产生的树不纯度降差最大的地方过分靠近根节点。后剪枝中树首先要充分生长,直到叶节点都有最小的不纯度值为止,因而可以克服“视界局限”。然后对所有相邻的成对叶节点考虑是否消去它们,如果消去能引起令人满意的不纯度增长,那么执行消去,并令它们的公共父节点成为新的叶节点。
问题一:数据库概念模型与什么有关 数据模型是对现实世界数据特征的抽象,其三要素是(数据结构,数据 *** 作,数据的约束条件)
最常用的数据模型分为概念数据模型和基本数据模型
概念数据模型是按用户的观点对数据和信息建模,是现实世界到信息世界的第一层抽象。
基本数据模型是按计算机系统的观点对数据建模,是现实世界数据特征的抽象,用于DBMS的实现(层次模型,网状模型,关系模型)
问题二:数据库概念模型的基本概述 把面向对象的方法和数据库技术结合起来可以使数据库系统的分析、设计最大程度地与人们对客观世界的认识相一致。面向对象数据库系统是为了满足新的数据库应用需要而产生的新一代数据库系统。数据库概念模型实际上是现实世界到机器世界的一个中间层次。数据库概念模型用于信息世界的建模,是现实世界到信息世界的第一层抽象,是数据库设计人员进行数据库设计的有力工具,也是数据库设计人员和用户之间进行交流的语言。建立数据概念模型,就是从数据的观点出发,观察系统中数据的采集、传输、处理、存储、输出等,经过分析、总结之后建立起来的一个逻辑模型,它主要是用于描述系统中数据的各种状态。这个模型不关心具体的实现方式(例如如何存储)和细节,而是主要关心数据在系统中的各个处理阶段的状态。 实际上,数据流图也是一种数据概念模型。
问题三:数据库中概念模型的含义和作用 数据模型是对现实世界数据特征的抽象,其三要素是(数据结构,数据 *** 作,数据的约束条件) 最常用的数据模型分为概念数据模型和基本数据模型 概念数据模型是按用户的观点对数据和信息建模,是现实世界到信息世界的第一层抽象。 基本数据模型是按计算机系统的观点对数据建模,是现实世界数据特征的抽象,用于DBMS的实现(层次模型,网状模型,关系模型)
问题四:概念模型是什么? 也称信息模型,它是按用户的观点来对数据和信息建模。概念模型是现实世界到机器世界的一个中间层次。表示概念模型最常用的是实体-关系图。概念模型是对真实世界中问题域内的事物的描述,不是对软件设计的描述。概念的描述包括:记号、内涵、外延,其中记号和内涵(视图)是其最具实际意义的。概念模型用于信息世界的建模,它是世界到信息世界的第一层抽象,它数据库设计的有力工具,也是数据库开发人员与用户之间进行交流的语言。因此概念模型既要有较强的表达能力,应该简单、清晰、易于理解。目前最常用的是实体-联系模型。在管理信息系统中,概念模型:是设计者对现实世界的认识结果的体现,是对软件系统的整体概括描述。让读者更易理解,读时有个参考的东西。概念模型设计的常用方法是实体关系方法(E-R方法)。用实体关系方法对具体数据进行抽象加工,将实体 抽象成实体类型,用实体间的关系反映现实世界事物间的内在关系。首先可以进行局部E-R模型,然后把各局部E-R模型综合成一个全局的E-R模型,最后对全局E-R模型进行优化,最后得到的。在数据仓库中的含义总的来说,数据仓库的结构采用了三级数据模型的方式,即概念模型、逻辑模型、物理模型。概念模型:也就是业务模型,由企业决策者,商务领域知识专家和IT专家共同研究和分析企业级的跨领域业务系统需求分析的结果。在数据仓库项目中,物理模型设计和业务模型设计象两个轮子一样有力地支撑着数据仓库的实施,两者并行不悖,缺一不可。实际上,这有意地扩大了物理模型和业务模型的内涵和外延,因为,在这里物理模型不仅仅是数据的存储,而且也包含了数据仓库项目实施的方法论、资源以及软硬件选型,而业务模型不仅仅是主题模型的确立,也包含了企业的发展战略,行业模本等等更多的内容。一个优秀的项目必定会兼顾业务需求和行业标准两个方面,业务需求既包括用户提出的实际需求,也要客观分析它隐含的更深层次的需求,但是往往用户的需求是不明确的,需要加以提炼甚至在商务知识专家引导下加以升华,和用户一起进行需求分析工作。如果不能满足用户的需求,项目也就失去了原本的意义。关于概念模型概念模型设计是在原有的业务数据库的基础上建立了一个较为稳固的概念模型。因为数据仓库是对原有数据库系统中的数据进行集成和重组而形成的数据 ,所以数据仓库的概念模型设计,首先要对原有数据库系统加以分析理解,看在原有的数据库系统中有什么、怎样组织的和如何分布的等,然后再来考虑应当如何建立数据仓库系统的概念模型。一方面,通过原有数据库的设计文档以及在数据字典中的数据库关系模式,我们可以对企业现有的数据库中的内容有一个完整而清晰的认识;另一方面,数据仓库的概念模型是面向企业全局建立的,它为集成来自各个面向应用的数据库的数据提供了统一的概念视图。它的工作主要是界定系统的边界和确定主要的主题域。界定系统边界将决策者的数据分析的需求用系统边界的定义形式反映出来。确定主题域是对每个主题域的内容进行较明确的数据仓库建模技术在行业中的应用描述,其内容包括:主题域的公共码键、主题域之间的联系以及充分代表主题的属性组。
问题五:数据库设计概念模型图,逻辑模型图分别是什么? 11概念模型(E-R图描述)
概念模型是对真实世界中问题域内的事物的描述,不是对软件设计的描述。
表示概念模型最常用的是实体-关系图。
E-R图主要是由实体、属性和关系三个要素构成的。在E-R图中,使用了下面几种基本的图形符号。
实体,矩形
E/R图三要素 属性,椭圆形
关系,菱形
关系:一对一关系,一对多关系,多对多关系。
E/R图中的子类(实体):
12逻辑模型
逻辑数据模型反映的是系统分析设计人员对数据存储的观点,是对概念数据模型进一步的分解和细化。
13物理模型
物理模型是对真实数据库的描述。数据库中的一些对象如下:表,视图,字段,数据类型、长度、主键、外键、索引、是否可为空,默认值。
概念模型到物理模型的转换即是把概念模型中的对象转换成物理模型的对象。
问题六:什么是数据库的概念结构 1 数据库定义:数据库是长期储存在计算机内、有组织的、可共享的大量数据的 。数据库中的数据按一定的数据模型组织、描述和储存,具有较小的冗余度、较高的数据独立性和易扩展性,并可为各种用户共享。2 数据库管理技术发展的三个阶段:人工管理阶段,文件系统阶段,数据库系统阶段。3 DBMS(数据库管理系统)是位于用户与 *** 作系统之间的一层数据管理软件。主要功能:1,数据定义功能。2,数据组织、存储和管理。3,数据 *** 纵功能。4,数据库的事务管理和运行管理。5,数据库的建立和维护功能。6,其他功能。4 什么是数据模型及其要素 (设计题): 数据模型是数据库中用来对现实世界进行抽象的工具,是数据库中用于提供信息表示和 *** 作手段的形式构架。一般地讲,数据模型是严格定义的概念的 。这些概 念精确地描述系统的静态特性、动态特性和完整性约束条件。因此数据模型通常由数据结构、数据 *** 作和完整性约束三部分组成。 (1)数据结构:是所研究的对象类型的 ,是对系统的静态特性的描述。 (2)数据 *** 作:是指对数据库中各种对象(型)的实例(值)允许进行的 *** 作的 ,包括 *** 作及有关的 *** 作规则,是对系统动态特性的描述。 (3)数据的约束条件:是完整性规则的 ,完整性规则是给定的数据模型中数据及其联系所具有的制约和依存规则,用以限定符合数据模型的数据库状态以及状态的变化,以保证数据的正确、有效、相容。最常用的数据模型:层次模型,网状模型,关系模型,面积对象模型,对象关系模型。5常用的数据模型有哪些(逻辑模型是主要的),各有什么特征,数据结构是什么样的。答:数据模型可分为两类:第一类是概念模型,也称信息模型,它是按用户的观点来地数据和信息建模,主要用于数据库设计。第二类是逻辑模型和物理模型。其中逻辑模型主要包括层次模型、层次模型、关系模型、面向对象模型和对象关系模型等。它是按计算机系统的观点对数据建模,主要用于DBMS的实现。物理模型是对数据最低层的抽象,它描述数据在系统内部的表示方式和存取方法,在磁盘或磁带上的存储方式和存取方法,是面向计算机系统的。物理模型是具体实现是DBMS的任务,数据库设计人员要了解和选择物理醋,一般用户则不必考虑物理级的细节。层次数据模型的数据结构特点:一是:有且只有一个结点没有双亲结点,这个结点称为根结点。二是:根 以外的其他结点有且只有一个双亲结点。优点是:1层次 数据结构比较简单清晰。2层次数据库的查询效率高。3层次数据模型提供了良好的完整性支持。缺点主要有:1现实世界中很多联系是非层次性的,如结点之间具有多对多联系。2一个结点具有多个双亲等 ,层次模型表示这类联系的方法很笨拙,只能通过引入冗余数据或创建非自然的数据结构来解决。对插入和删除 *** 作的限制比较多,因此应用程序的编写比较复杂。3查询子女结点必须通过双亲结点。4由于结构严密,层次命令趋于程序化。可见用层次模型对具有一对多的层次联系的部门描述非常自然,直观容易理解,这是层次数据库的突出优点。网状模型:特点:1允许一个以上的结点无双亲2一个结点可以有多于一个的双亲。网状数据模型的优点主要有:1能够更为直接地描述现实世界,如一个结点可以有多个双亲。结点
之间可以有多种上联第。2具有良好的性能,存取效率较高。缺点主要有:1结构比较复杂,而且随着应用环境的扩大,数据库的结构就变得越来越复杂,不利于最终 用户掌握。2网状模型的DDL,DML复杂,并且要嵌入某一种高级语言中,用户不容易掌握,不容易使用。关系数据模型具有下列优点:1关系模型与非关系模型不同,它是建立在严格的数学>>
问题七:怎么用powerdesigner画数据库概念模型 怎么用powerdesigner画数据库概念模型方法/步骤
打开PowerDesigner,点击菜单“File”---->“New Model”
点击OK按钮后,将进入如下的画面,
系统将出现一个工具栏如下,用于在设计面板中设计模型,
单击Entity图标,然后在主面板中单击一次便可添加一个实体,
切换回一般鼠标模式,双击已经添加的实体,d出设置属性的对话框,
在General选项卡中可以设置实体的Name和Code等属性,
Code是实体在数据库中的实际名称,一般用英文,Name是显示的名称,一般用中文,方便理解。
切换到Attributes选项卡可以添加实体的属性,
问题八:数据库概念模型的关系模型 在关系模型中,数据的逻辑结构是一张二维表。在数据库中,满足下列条件的二维表称为关系模型:① 每一列中的分量是类型相同的数据;② 列的顺序可以是任意的;③ 行的顺序可以是任意的;④ 表中的分量是不可再分割的最小数据项,即表中不允许有子表;⑤ 表中的任意两行不能完全相同。关系数据库采用关系模型作为数据的组织方式。 关系数据库因其严格的数学理论、使用简单灵活、数据独立性强等特点,而被公认为最有前途的一种数据库管理系统。它的发展十分迅速,目前已成为占据主导地位的数据库管理系统。自20世纪80年代以来,作为商品推出的数据库管理系统几乎都是关系型的,例如,Oracle,Sybase,Informix,Visual FoxPro,mysql,sqlserver等。关系模型范式只有满足一定条件的关系模式,才能避免 *** 作异常。关系模式要满足的条件称为规范化形式,简称范式。下面介绍四种不同程度的范式,由低级向高级:1、第一范式(1NF)在关系模式R的每一个具体关系r中,如果每个属性值都是不可能再分的最小数据单元,则称R是第一范式。记为R∈1NF。1NF是关系数据库能够保存数据并且正确访问数据的最基本条件。2、第二范式(2NF)如果关系模式R(U,F)中的所有非主属性都完全函数依赖于任意一个候选关键字,则称关系R是属于第二范式。记为R∈2NF。3、第三范式(3NF)如果关系模式R(U,F)中所有非主属性对任何侯选关键字都不存在传递依赖,则称关系R是属于第三范式。记为R∈3NF。4、BCNF如果关系模式R(U,F)R属于1NF,对任何非平凡依赖的函数依赖X→Y(Y!→X)X均包含码。记为R∈BCNF。如果R是BCNF则一定是3NF;反之则不行。一个低级范式的关系模式,可以通过分解方法转换成若干个高一级范式的关系模式的 ,也可以说任何一个高层的范式,总是能够满足低层的范式。
问题九:模型的概念。数据库中的数据模型主要有哪些?数据模型的组成的要素有哪些? 数据库模型描述了在数据库中结构化和 *** 纵数据的方法,模型的结构部分规定了数据如何被描述(例如树、表等);模型的 *** 纵部分规定了数据的添加、删除、显示、维护、打印、查找、选择、排序和更新等 *** 作。
数据库模型的分类
1概念模型 2 层次模型
3 网状模型 4 关系模型
数据模型所描述的内容包括三个部分:数据结构、数据 *** 作、数据约束。
sql server 建立决策树模型 在之前的系列中,介绍了如何导入数据源,不论是excel文件还是其它的数据源,都可以作为我们的数据来源来导入,那么,本文就根据之前导入的数据在sql server 建立决策树模型,并且对测试数据进行结果预测,原理部分,请参看其他博文
数据库可以按照内容类型分类:书目、全文、数字和图像。在计算中,数据库有时根据其组织方法进行分类。有许多不同类型的数据库,从最流行的方法关系数据库到分布式数据库、云数据库或NoSQL数据库。
常用数据库:
1、关系型数据库
关系型数据库是由IBM的EF Codd于1970年发明的,它是一个表格数据库,其中定义了数据,因此可以以多种不同的方式对其进行重组和访问。
关系数据库由一组表组成,其中的数据属于预定义的类别。每个表在一个列中至少有一个数据类别,并且每一行对于列中定义的类别都有一个特定的数据实例。
结构化查询语言(SQL)是关系数据库的标准用户和应用程序接口。关系数据库易于扩展,并且可以在原始数据库创建之后添加新的数据类别,而不需要修改所有现有应用程序。
2、分布式数据库
分布式数据库是一种数据库,其中部分数据库存储在多个物理位置,处理在网络中的不同点之间分散或复制。
分布式数据库可以是同构的,也可以是异构的。同构分布式数据库系统中的所有物理位置都具有相同的底层硬件,并运行相同的 *** 作系统和数据库应用程序。异构分布式数据库中的硬件、 *** 作系统或数据库应用程序在每个位置上可能是不同的。
3、云数据库
云数据库是针对虚拟化环境(混合云、公共云或私有云)优化或构建的数据库。云数据库提供了一些好处,比如可以按每次使用支付存储容量和带宽的费用,还可以根据需要提供可伸缩性和高可用性。
云数据库还为企业提供了在软件即服务部署中支持业务应用程序的机会。
4、NoSQL数据库
NoSQL数据库对于大型分布式数据集非常有用。
NoSQL数据库对于关系数据库无法解决的大数据性能问题非常有效。当组织必须分析大量非结构化数据或存储在云中多个虚拟服务器上的数据时,它们是最有效的。
5、面向对象的数据库
使用面向对象编程语言创建的项通常存储在关系数据库中,但是面向对象数据库非常适合于这些项。
面向对象的数据库是围绕对象(而不是 *** 作)和数据(而不是逻辑)组织的。例如,关系数据库中的多媒体记录可以是可定义的数据对象,而不是字母数字值。
6、图形数据库
面向图形的数据库是一种NoSQL数据库,它使用图形理论存储、映射和查询关系。图数据库基本上是节点和边的集合,其中每个节点表示一个实体,每个边表示节点之间的连接。
图形数据库在分析互连方面越来越受欢迎。例如,公司可以使用图形数据库从社交媒体中挖掘关于客户的数据。
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C45和C50生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。
分类树(决策树)是一种十分常用的分类方法。它是一种监督学习,所谓监督学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。
分类决策树模型是一种描述对实例进行分类的树形结构 决策树由结点和有向边组成 结点有两种类型: 内部结点和叶节点 内部节点表示一个特征或属性, 叶节点表示一个类
决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的预测分析模型
分类树--对离散变量做决策树
回归树--对连续变量做决策树
优点:
(1)速度快: 计算量相对较小, 且容易转化成分类规则 只要沿着树根向下一直走到叶, 沿途的分裂条件就能够唯一确定一条分类的谓词
(2)准确性高: 挖掘出来的分类规则准确性高, 便于理解, 决策树可以清晰的显示哪些字段比较重要, 即可以生成可以理解的规则
(3)可以处理连续和种类字段
(4)不需要任何领域知识和参数假设
(5)适合高维数据
缺点:
(1)对于各类别样本数量不一致的数据, 信息增益偏向于那些更多数值的特征
(2)容易过拟合
(3)忽略属性之间的相关性
若一事假有k种结果, 对应概率为 , 则此事件发生后所得到的信息量I为:
给定包含关于某个目标概念的正反样例的样例集S, 那么S相对这个布尔型分类的熵为:
其中 代表正样例, 代表反样例
假设随机变量(X,Y), 其联合分布概率为P(X=xi,Y=yi)=Pij, i=1,2,,n;j=1,2,,m
则条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性, 其定义为X在给定条件下Y的条件概率分布的熵对X的数学期望
在Hunt算法中, 通过递归的方式建立决策树
使用信息增益, 选择 最高信息增益 的属性作为当前节点的测试属性
ID3( Examples,Target_attribute,Attributes )
Examples 即训练样例集 Target_attribute 是这棵树要预测的目标属性 Attributes 是除目标属性外供学习到的决策树测试的属性列表 返回能正确分类给定 Examples 的决策树
class sklearntreeDecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=00, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=00, min_impurity_split=None, class_weight=None, presort=False)
限制决策树层数为4的DecisionTreeClassifier实例
This plot compares the decision surfaces learned by a dcision tree classifier(first column), by a random forest classifier(second column), by an extra-trees classifier(third column) and by an AdaBoost classifier(fouth column)
Output:
A comparison of a several classifiers in scikit-learn on synthetic datasets
The point of this examples is to illustrate the nature of decision boundaries of different classifiers
Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers
This example fits an AdaBoost decisin stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters and plots the decision boundary and decision scores
Output:
以上就是关于什么是决策树全部的内容,包括:什么是决策树、什么是数据库概念模型、SQL Server决策树分类中数据库只建两个表就行了吗等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)