转录组不求人系列(十三): GO、KEGG富集个性化作图

转录组不求人系列(十三): GO、KEGG富集个性化作图,第1张

当富集分析完成,拿到如下的分析结果后,就可以进行作图了。

富集分析结果的可视化无非就是柱状图和气泡图,但是公司默认出图实在是太丑,所以还是自己动手修改修改。

一、常规柱状图(ggplot2)

横轴为gene counts,或者用-logP也行,填充相应的用P值或者gene counts。ggplot画图的好处就是可以进行很多调整。

二、常规气泡图(ggplot2)

气泡图与柱状图如出一辙,只是在展示方式上出现了差别。一个用geom_bar()函数,气泡图类似于散点图用geom_point()函数。

三、上下调同时展示(ggplot2)

很多时候研究者拿到差异基因后,上下调基因是分别富集的,在展示上需要同时体现二者,我们之前提到metascape可以做到: 转录组不求人系列(十二): Cell文章最喜欢用的差异基因GO、KEGG富集分析工具 ,除此之外,之前讲过的气泡图也可以展现多组的结果: 复现《nature communications》图表(四):ggplot画多组富集气泡图 。这里我们继续提供一种bar图的展示方式。将down的数值调整为负,做一列分组,就可以展示了。

当然了,以上所说的可视化还是比较常规,在基础上可以自己做调整。也有一些文章总是标新立意,有很多奇特的展现方式,我们会在之后的系列中讲解。

我对这个也不算非常了解,简单说下我的经验,仅供参考。

首先其实有很多pathway都与肿瘤相关,一般来说与肿瘤发生相关的pathway包括细胞信号转导(akt,notch,MAPK等)、细胞损伤修复(ATM,NHEJ等)、细胞周期调控(Cdk)、基因表达调控(如 p53)以及细胞迁移等,而且它们之间一般都有交叉。虽然大多数pathway都或多或少参与肿瘤发生,但是直接相关的一般是我提到的这些,主要作用于cancer的发生,成熟以及迁移。

其次,通过你这个图上列出来的这个肿瘤基因有可能参与的过程,我觉得有可能参与肿瘤发生的包括:regulation of cell morphogenesis(因为肿瘤细胞形成中细胞形态会发生变化);regulation of gene expression(比如p53就会抑制与cancer发生相关基因的表达,但这个功能实在太宽泛了,可以说所有细胞活动都和基因表达相关,请问你这个基因是transcript factor吗?如果是的话这就很可能是它直接参与cancer development的原因);positive regulation of peptidase activity (和前面那点一样,这种广谱性影响蛋白质变化的过程可以参与任何方面);response to corticosteroid (有可能通过response to一些皮质类激素调节cell signal);positive regulation of macromolecule biosynthetic process(调节大分子生物合成也可能影响蛋白质表达);anatomical structure formation involved in morphogenesis (同在morphogenesis的解释)。

最后说明一点,仅仅通过这种方法其实并不会很大的缩小范围,但是如果结合你的目的蛋白的功能研究(如果之前有相关文献报道或者你已知目的蛋白具有酶活性)或定位分析,就可以大大缩小范围了。

希望能对你有所帮助,如果有进一步问题,我们可以继续讨论。

单细胞测序数据经Seurat包tsne降维聚类后,得到cluster,如何找出cluster的marker并进行GO、KEGG分析

需要R包:Seurat、clusterProfiler、ggplot2

GO富集分析原理简介和DAVID的GO富集分析方法 *** 作演示

    寻找差异表达的基因并挖掘它们可能的功能,是我们进行RNA测序的最主要目的。很明显,这些差异的基因必然与功能改变密切相关,例如,比较患病个体与正常个体的组织表达谱,不难想到这些表达显著改变的基因参与了疾病或免疫相关的生物学过程、信号通路等,基因表达水平的失调与疾病肯定密不可分。

    我们平时看RNA-seq相关的文献时,文章中在鉴定了差异表达的基因后,大都会在随后承接几句关于这些失调基因所涉及通路的描述。例如,讨论这些差异基因主要映射到哪些GO或KEGG分类条目中,以说明基因表达的改变会导致哪些调控途径原有功能失调,进而与表型联系起来。通常称这种分析为GO、KEGG富集分析。

    本节视频教程,就让我们带大家学习什么是GO、KEGG富集分析,它们的主要原理是什么,并简单展示使用DAVID进行差异表达基因GO富集分析的 *** 作过程。

视频教程:

附:bilibili超清视频链接: >

以上就是关于转录组不求人系列(十三): GO、KEGG富集个性化作图全部的内容,包括:转录组不求人系列(十三): GO、KEGG富集个性化作图、如何看go数据库中查出来的pathway,是否与肿瘤相关、找出cluster的差异基因并进行GO和KEGG分析等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9773704.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存