最商业的是ORACLE,做的最专业,然后是微软的SQLserver,做的也很好,当然还有DB2等做得也不错,这些都是大型的数据库,如果掌握的全面的话,可以保证数据的安全然后就是些小的数据库aess,mysql等,适合于中小企业的数据库100万数据一下的数据。
数据仓库:为企业所有级别的决策制定过程,提供所有类型数据支持的战略(数据)集合。
大数据:所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
传统数据库:一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。
其实从三个定义,我们好像区别不大。
数据库指的是数据的集合,数据仓库也是一个数据集合,大数据也是一个处理和存储数据的地方。
但是不同的是,在于应用场景,和构建的技术原理不一样。
传统数据库是存储根据范式建模的关系型数据,主要用于OLTP(on-line transaction processing)翻译为联机事务处理的软件。大数据是根据map redurce范式构建的出局处理,存储的软件,主要用于OLAP是做分析处理。大数据和传统数据库,还有一个更大的区别在于,处理的数据量以及计算量的大小,当传统数据库,无法在人可以接受的短时间内计算出结果,那这个数据就叫大数据,需要使用到大数据技术处理。而数据仓库本质上是一种数据的处理方式,而不是一种基础软件,它可以依赖于传统数据库,也可以依赖大数据技术去构建。
可以参考这篇文章:数据仓库(2)数据仓库、大数据与传统数据库的区别 - 知乎 (zhihucom)
对于数据库研究人员和从业人员而言,从数据库(DB)到大数据(BD)的转变可以用“池塘捕鱼”到“大海捕鱼”做类比。“池塘捕鱼”代表着传统数据库时代的数据管理方式,而 “大海捕鱼”则是大数据时代的数据管理方式。这些差异主要体现在如下几个方面:
1、数据规模
数据库和大数据最明显的区别就是规模。数据库规模相对较小,即便是先前认为比较大的数据库,比如 VLDB(Very Large Database),和大数据XLDB(Extremely Large Database)比起来还是差很远。
数据库的处理对象一般以 MB 为基本单位,而大数据则是GB、TB、PB 为基本处理单位。
2、数据类型
传统数据库数据种类单一,往往仅仅有一种或少数几种,这些数据又以结构化数据为主。而大数据的种类数以亿计,而这些数据既包括结构化、半结构化以及非结构化的数据,重要的是半结构化和非结构化数据所占份额越来越大。
3模式(Schema)和数据的关系
传统的数据库都是先有模式,然后才会产生数据。而大数据很多情况下难以预先确定模式,模式只有在数据出现之后才能确定,且模式随着数据量的增长处于不断的演变之中。
4处理对象
传统数据库数据是其处理的对象。而大数据的处理对象除了是数据以外,还能通过这些数据去预测其他数据出现的可能性,将收集到的数据作为一种资源来辅助解决其他诸多领域的问题。
三个特点。
1、大量,数据储存的量级由TB级升高到PB级,通常情况下大数据的规模最少也是lOTB。
2、多样化,大数据数据库中存储着多种类型的数据,数据类型有结构化、非结构化、半结构化。
3、高速,在处理信息数据时速度很快,而这也是大数据数据库与传统数据库的区别。
以上就是关于几大数据库的区别(三大数据库的区别与联系)全部的内容,包括:几大数据库的区别(三大数据库的区别与联系)、详解数据仓库和数据库的区别、数据库和大数据的区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)