《刷脸背后》(张重生 著)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan.baidu.com/s/12y3KG2LObdaDpUjU3wHCuQ
提取码:decs书名:刷脸背后
作者:张重生 著
豆瓣评分:6.3
出版社:电子工业出版社
出版年份:2017-8-1
页数:234
内容简介:
人脸识别是当今热门的研发方向,在安防、金融、旅游等领域具有十分广泛的应用。本书全面、系统地介绍“刷脸”背后的技术,包括人脸检测、人脸识别、人脸检索相关的算法原理和实现技术。本书中讲解的算法具有高度的可 *** 作性和实用性。通过学习本书,研究人员、工程师能够在3~5个月内,系统了解、掌握人脸检测、人脸识别、人脸检索相关的原理和技术。本书内容新颖、层次清晰,适合高校教师、研究人员、研究生、高年级本科生、人脸识别爱好者使用。
作者简介:
张重生,男,博士,教授,硕士生导师,河南大学大数据研究中心、大数据团队带头人。研究领域为大数据分析、深度学习、数据挖掘、数据库、数据流(实时数据分析)。
博士毕业于 INRIA,France(法国国家信息与自动化研究所),获得优秀博士论文荣誉。2010年08月至2011年3月,在美国加州大学洛杉矶分校(UCLA),计算机系,师从著名的数据库专家Carlo Zaniolo教授,从事数据挖掘领域的合作研究。 2012-2013,挪威科技大学,ERCIM/Marie-Curie Fellow。
工业软件中几乎最难啃的三座大山,就是CAD、CAE和EDA,大山中间还穿插了许多小的丘陵,如CAM、拓扑优化、工程数据库等。工业软件这三座大山,是人类基础学科和工程知识的集大成者。尽管它支撑了整个工业的体系,但它的市场份额却小的可怜,不拿显微镜,是找不到它的存在。然而它自身的构成,分别是令人望而生畏的数学、物理、计算机和工程经验。没有一种产值如此微不足道的工业产品,却需要有如此漫长的生命轨迹。从大学的数学方程式开始出发,经过漫长的物理机理的冶炼、计算机科学与技术的萃取,最后还必须经过工程知识的淬火,才能成为一个成熟可用的工业软件产品。
四大技术图谱就像四座护法金刚,形成了深不可测的技术鸿沟。这对于任何一个工业软件企业,十年发展的沉淀,那还只是开始。这条路,太漫长了。
数学基础需要扎实
工业软件首先要有良好的数学基础。计算机辅助设计软件CAD这个学科的渊起和发展,主要是数学的一个分支微分几何突破之后,进化出了一个新学科——计算几何,孔斯、弗格森、贝塞尔等为CAD,CAE,EDA等软件所依赖的3D几何造型提供了强有力的理论基础,在此基础上发展起来的NURBS相关曲线曲面理论和算法是目前大部分商用软件所使用几何引擎的关键技术。
而仿真分析软件CAE无论对于数据的前处理和后处理,还是各种求解器,对数学也有很高的要求。
前处理不仅仅是数据导入、模型修复和显示,很大一块是网格剖分的能力,这部分的技术门槛不低。算是CAE领域后起之秀Altair作为有几十产品的上市公司,至今前处理软件HyperMesh还是最重要的旗舰产品,贡献了公司最多的收入,也是在CAE领域站稳脚的基石。后处理在大规模的数据处理和直观、动态、炫酷可视化展示方面也有很多需要研发的内容,尤其是在B/S架构下,如何通过Web页面快速高质量加载巨大的CAE计算结果,会是一个巨大的挑战。
工业强度的网格生成算法不仅有很深的理论问题,也有很大的程序开发工作量。德国的斯杭博士在德国开发Tetgen,从2000年左右开始一直只做这样的一件事情,坚持了20年,才有了和商业四面体引擎ghs3d竞争的能力。同样法国Distene公司开发的MeshGems系列网格剖分系统被广泛用于商业CAE软件,最早来源于INRIA(法国国家信息与自动化研究所),十几个研发人员也专注开发了近20年。
工业软件这条路上,尽是寂寞的黑夜中的探索。
在NASA公布的CFD VISION2030战略咨询报告中,网格生成是单列的五项关键领域之一,并被认为是达成2030愿景的主要瓶颈。就在这样一个高难度的领域,国内很多软件都是裸奔,依靠Gmsh之类开源算法无法满足客户定制改进的要求,很难做到工业应用主流中去。
优化也是普遍性的数值方法,包括优化理论、代理模型等,是求解复杂工程问题的基础,更不用说对各种路径规划所涉及的矩阵理论、泛函分析、动态规划、图论等等,无不是多约束条件下的多目标自动解空间寻优,背后都是数学王国建构的基础之基。
各种CAE、EDA软件中需要多种计算数学理论和算法,包括线性方程组、非线性方程组求解、偏微分方程求解、特征值特征向量求解、大规模稀疏矩阵求解等都需要非常深厚的数学基础。如果不能熟练运用各种数学工具,对物理场的建模也就无从谈起。
物理场面临着多种挑战
头疼的数学之后,接着是头疼的物理。这是仿真软件、EDA软件需要突破的地方。工业技术的源头,是对材料及其物理特性的开发与利用。因此,对多物理场及相互耦合的描述与建模是各种仿真分析软件的核心。
而工业软件由于要解决的是真实的大千世界,所有看得见、看不见的物理场,都在按照各自的机理自由游荡。工业软件必须要跨越十分宽广的学科光谱,跨越了钱学森科学技术体系的基础科学、技术科学、工程科学、工程技术,而且也会包含大量的经验、诀窍等“前科学”知识。具体而言,任何CAE软件在市场上存身的根本都是其解决结构、流体、热、电&磁、光、声、材料、分子动力学等物理场问题的能力,每种物理场都包含丰富的分支学科。
仿真分析软件CAE的求解器由物理算法组成,每个专业领域都有一堆问题求解算法,不同领域如电磁、结构、流体的求解器处理机制,完全不同,基本没法通用;另外一方面,跟FEA有限元方法有关,采用的单元类型不同,问题求解算法也不同。因此,虽然也有第三方的求解器,但无法像三维CAD软件领域那样形成通过出售几何建模引擎和几何约束求解引擎获利的商业模式。
以结构为例,为解决结构设计的问题,有可能会涉及到理论力学,分析力学,材料力学,结构力学,d性力学,塑性力学,振动力学,疲劳力学,断裂力学等一系列学科。在这个基础上,主流的CAE软件都支持结构优化功能。相对于传统的CAE的仅限于评估设计是否满足要求,结构优化软件在创成式设计等先进技术支持下可自动生成更好的结构轻,性能优、装配件少的更优设计。
由于现实世界的发展要求,产品的智能化提高导致的复杂度提高,往往产品本身涉及多场多域问题。物理场有太多的组合,相互之间又干扰不清。这些复杂的问题,既要深刻理解学科自身的物理特性,并对这些学科物理特性所沉淀的学科方程,如电磁的麦克斯韦方程、流体力学的伯努利方程、纳维-斯托克斯方程等等,深刻理解之外,还要对实际工程应用领域的多物理场交织耦合环境能够快速解耦,让不同学科不同特质的特征参数迭代过程中能够互为方程组求解的输入输出,以便对多场多域的工程问题进行优化。
随着现在需要处理的模型规模越来越大,模型本身也越来越复杂,现有国际上大型商业CAD、CAE、EDA中使用的几何建模引擎和几何约束求解商业化组件产品(包括InterOp、CGM、ACIS、CDS、Parasolid、D-Cubed等)厂商达索系统、西门子等也在不断跟进最新的计算机技术。比如最近也在采用多线程技术不断改进之前的算法,用于大幅提升模型导入、模型修复、缝合、实体建模、布尔运算、面片化以及约束求解的效率。
没有那么容易,比较难分布式工程学是一门实践性很强的工科学。所以会出现与其他工科一样的现象就是实践会先于理论。在1960年末被公认为是第一个分布式系统的ARPANET就诞生于美国[1]。在美国50年代到60年受曼哈顿计划的影响,计算机理论迎来了大爆炸的时代。在那个年代发明了我们今天所用到的大部分计算机理论。作为一个新兴学科,当年的科学家大都是刚刚毕业正是壮年。而今他们大多已经是高龄老人,有些科学家则已经离世。在这里向哪些为计算机理论作出贡献的科学家们表示敬意。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)