请简要说明数据库逻辑设计所包含的工作

请简要说明数据库逻辑设计所包含的工作,第1张

设计数据的逻辑结构,与具体的DBMS无关,主要反映业务逻辑。数据逻辑设计是整个设计的前半段,包括所需的实体和关系,实体规范化等工作。

数据库逻辑设计决定了数据库及其应用的整体性能,调优位置。如果数据库逻辑设计不好,则所有调优方法对于提高数据库性能的效果都是有限的。为了使数据库设计的方法走向完备,数据库的规范化理论必须遵守。规范化理论为数据库逻辑设计提供了理论指导和工具,在减少了数据冗余的同时节约了存储空间,同时加快了增、删、改的速度。

另外,在规范的数据库逻辑设计时,还应考虑适当地破坏规范规则,即反规范化设计,来降低索引、表的数目,降低连接 *** 作的数目,从而加快查询速度。常用的反规范技术有增加冗余列、增加派生列、重新组表等。

总之,在进行数据库逻辑设计时,

一定要结合应用环境和现实世界的具体情况合理地选择数据库模式。

关系数据库的设计步骤一般包括以下几个方面:

需求分析:了解用户需求,确定数据库的功能和所包含的数据。

概念设计:根据需求分析结果,设计数据库的概念模型,即确定数据库中需要的实体、属性和关系等。

逻辑设计:将概念模型转换为关系模型,确定数据库中的表、字段及其之间的关系。

物理设计:根据逻辑设计结果,建立数据库的物理结构,包括表空间、索引等。

实施和维护:完成数据库的建立和维护,包括数据的导入、备份和恢复等。

为每张表定义一个组件,这个组件一般是指表中的每个字段或属性,即每个组件代表表中的一个数据元素。在定义组件时,需要注意以下几个技巧:

命名规范:对于每个组件的命名需要遵循一定的规范,如使用有意义的英文单词或缩写等,以便于理解和查询。

数据类型选择:根据数据元素的类型和范围,选择合适的数据类型,以保证数据的正确性和有效性。

约束条件设置:根据数据元素的特性和业务规则,设置相应的约束条件,如主键、外键、唯一性约束、非空约束等,以保证数据的完整性和一致性。

数据元素的关系:根据表之间的关系和数据元素之间的关系,设置合适的关联关系,如一对一、一对多、多对多等。

这些技巧可以帮助设计人员更好地定义表中的组件,以保证数据的正确性和有效性。

关键字是指在SQL语句中具有特殊含义的单词或符号,如SELECT、FROM、WHERE等。关键字在SQL语句中起到了重要的作用,用于表示查询的对象、条件和 *** 作等。与定义表中的组件无直接关系,但在SQL语句中需要使用正确的关键字来 *** 作表中的数据。

数据库是需要设计的,数据库设计反映在两方面:

数据库逻辑设计:设计数据库的逻辑结构,与具体的DBMS无关,主要反映业务逻辑。

数据库物理设计:设计数据库的物理结构,根据数据库的逻辑结构来选定RDBMS(如Oracle、Sybase等),并设计和实施数据库的存储结构、存取方式等。

数据库逻辑设计决定了数据库及其应用的整体性能,调优位置。如果数据库逻辑设计不好,则所有调优方法对于提高数据库性能的效果都是有限的。为了使数据库设计的方法走向完备,数据库的规范化理论必须遵守。规范化理论为数据库逻辑设计提供了理论指导和工具,在减少了数据冗余的同时节约了存储空间,同时加快了增、删、改的速度。

另外,在规范的数据库逻辑设计时,还应考虑适当地破坏规范规则,即反规范化设计,来降低索引、表的数目,降低连接 *** 作的数目,从而加快查询速度。

常用的反规范技术有增加冗余列、增加派生列、重新组表等。

数据库逻辑设计是整个设计的前半段,包括所需的实体和关系,实体规范化等工作。设计的后半段则是数据库物理设计,包括选择数据库产品,确定数据库实体属性(字段)、数据类型、长度、精度确定、dbms页面大小等。

Oracle数据库的逻辑结构和物理结构

Oracle 数据库的逻辑结构是由一些数据库对象组成,如数据库表空间、表、索引、段、视图、存储过程、触发器等。数据库的逻辑存储结构(表空间等)决定了数据库的物理空间是如何被使用的,数据库对象如表、索引等分布在各个表空间中。

Oracle 数据库的物理结构从 *** 作系统一级查看,是由一个个的文件组成,从物理上可划分为:数据文件、日志文件、控制文件和参数文件。数据文件中存放了所有的数据信息;日志文件存放数据库运行期间产生的日志信息,它被重复覆盖使用,若不采用归档方式的话,已被覆盖的日志信息将无法恢复;控制文件记录了整个数据库的关键结构信息,它若被破坏,整个数据库将无法工作和恢复;参数文件中设置了很多Oracle 数据库的配置参数,当数据库启动时,会读取这些信息。

逻辑结构的优化

逻辑结构优化用通俗的话来说就是通过增加、减少或调整逻辑结构来提高应用的效率,下面通过对基本表的设计及索引、聚簇的讨论来分析ORACLE逻辑结构的优化。

1、基本表扩展

数据库性能包括存储空间需求量的大小和查询响应时间的长短两个方面。为了优化数据库性能,需要对数据库中的表进行规范化。一般来说,逻辑数据库设计满足第三范式的表结构容易维护且基本满足实际应用的要求。所以,实际应用中一般都按照第三范式的标准进行规范化,从而保证了数据库的一致性和完整性,设计人员往往会设计过多的表间关联,以尽可能地降低数据冗余。但在实际应用中这种做法有时不利于系统运行性能的优化:如过程从多表获取数据时引发大量的连接 *** 作,在需要部分数据时要扫描整个表等,这都消耗了磁盘的I/O 和CPU 时间。

为解决这一问题,在设计表时应同时考虑对某些表进行反规范化,方法有以下几种:一是分割表。分割表可分为水平分割表和垂直分割表两种:水平分割是按照行将一个表分割为多个表,这可以提高每个表的查询速度,但查询、更新时要选择不同的表,统计时要汇总多个表,因此应用程序会更复杂。垂直分割是对于一个列很多的表,若某些列的访问频率远远高于其它列,就可以将主键和这些列作为一个表,将主键和其它列作为另外一个表。通过减少列的宽度,增加了每个数据页的行数,一次I/O就可以扫描更多的行,从而提高了访问每一个表的速度。但是由于造成了多表连接,所以应该在同时查询或更新不同分割表中的列的情况比较少的情况下使用。二是保留冗余列。当两个或多个表在查询中经常需要连接时,可以在其中一个表上增加若干冗余的列,以避免表之间的连接过于频繁,一般在冗余列的数据不经常变动的情况下使用。三是增加派生列。派生列是由表中的其它多个列的计算所得,增加派生列可以减少统计运算,在数据汇总时可以大大缩短运算时间。

因此,在数据库的设计中,数据应当按两种类别进行组织:频繁访问的数据和频繁修改的数据。对于频繁访问但是不频繁修改的数据,内部设计应当物理不规范化。对于频繁修改但并不频繁访问的数据,内部设计应当物理规范化。有时还需将规范化的表作为逻辑数据库设计的基础,然后再根据整个应用系统的需要,物理地非规范化数据。规范与反规范都是建立在实际的 *** 作基础之上的约束,脱离了实际两者都没有意义。只有把两者合理地结合在一起,才能相互补充,发挥各自的优点。

2、索引和聚簇

创建索引是提高检索效率最有效的方法之一,索引把表中的逻辑值映射到安全的RowID,能快速定位数据的物理地址,可以大大加快数据库的查询速度,一个建有合理索引的数据库应用系统可能比一个没有建立索引的数据库应用系统效率高几十倍,但并不是索引越多越好,在那些经常需要修改的数据列上建立索引,将导致索引B树的不断重组,造成系统性能的下降和存储空间的浪费。对于一个大型表建立的索引,有时并不能改善数据查询速度,反而会影响整个数据库的性能。这主要是和SGA的数据管理方式有关,Oracle在进行数据块高速缓存管理时,索引数据比普通数据具有更高的驻留权限,在进行空间竞争时,Oracle会先移出普通数据,对建有索引的大型表进行数据查询时,索引数据可能会用完所有的数据块缓存空间,Oracle不得不频繁地进行磁盘读写来获取数据,所以,在对一个大型表进行分区之后,可以根据相应的分区建立分区索引。

Oracle提供了另一种方法来提高查询速度,就是聚簇(Cluster)。所谓聚簇,简单地说就是把几个表放在一起,按一定公共属性混合存放。聚簇根据共同码值将多个表的数据存储在同一个Oracle块中,这时检索一组Oracle块就同时得到两个表的数据,这样就可以减少需要存储的Oracle块,从而提高应用程序的性能。

对于逻辑结构的优化,还应将表数据和索引数据分开表空间存储,分别使用独立的表空间。因为如果将表数据和索引数据放在一起,表数据的I/O *** 作和索引的I/O *** 作将产生影响系统性能的I/O竞争,降低系统的响应效率。将表数据和索引数据存放在不同的表空间中,并在物理层面将这两个表空间的数据文件放在不同的物理磁盘上,就可以避免这种竞争了。

物理结构的优化

数据库的数据最终是存储在物理磁盘上的,对数据进行访问就是对这些物理磁盘进行读写,因此对于这些物理存储的优化是系统优化的一个重要部分。对于物理存储结构优化,主要是合理地分配逻辑结构的物理存储地址,这样虽不能减少对物理存储的读写次数,但却可以使这些读写尽量并行,减少磁盘读写竞争,从而提高效率,也可以通过对物理存储进行精密的计算减少不必要的物理存储结构扩充,从而提高系统利用率。

1、磁盘读写并行优化

对于数据库的物理读写,Oracle系统本身会进行尽可能的并行优化,例如在一个最简单的表检索 *** 作中,如果表结构和检索域上的索引不在一个物理结构上,那么在检索的过程中,对索引的检索和对表的检索就是并行进行的。

2、 *** 作并行优化

*** 作并行的优化是基于 *** 作语句的统计结果,首先是统计各个表的访问频率,表之间的连接频率,根据这些数据按如下原则分配表空间和物理磁盘,减少系统进程和用户进程的磁盘I/O竞争;把需要连接的表格在表空间/物理磁盘上分开;把高频访问的表格在表空间/物理磁盘上分开;把经常需要进行检索的表格的表结构和索引在表空间/物理磁盘上分开。

3、减少存储结构扩展

如果应用系统的数据库比较脆弱,并在不断地增长或缩小,这样的系统在非动态变化周期内效率合理,但是当在动态变化周期内的时候,性能却很差,这是由于Oracle的动态扩展造成的。在动态扩张的过程中,Oracle必须根据存储的要求,在创建行、行变化获取缺省值时,扩展和分配新的存储空间,而且表格的扩展往往并不是事情的终结,还可能导致数据文件、表空间的增长,这些扩展会导致在线系统反应缓慢。对于这样的系统,最好的办法就是在建立的时候预先分配足够的大小和合适的增长幅度。在一个对象建立的时候要根据应用充分地计算他们的大小,然后再根据这些数据来定义对象Initial、Next和Minextents的值,使数据库在物理存储上和动态增长次数上达到一个比较好的平衡点,使这些对象既不经常发生增长,也不过多地占用数据库。

逻辑结构设计是把概念模型结构转换成某个具体的DBMS所支持的数据模型。

逻辑结构设计步骤为:

1、把概念模型转换成一般的数据模型;

2、把一般的数据模型转换成特定的DBMS所支持的数据模型;

3、通过优化方法将其转化为优化的数据模型。

数据库设计过程包括:

现实世界→需求分析→概念设计→逻辑设计→物理设计

概念设计--利用数据模型进行概念数据库的模式设计。它不依赖任何DBMS(数据库管理系统)常用的数据模型为ERM(实体联系模型),用到的术语有:实体、属性、联系、键。

逻辑设计--把概念设计得到的概念数据库模式变为逻辑数据模式,它依赖于DBMS。用到的术语有:函数依赖、范式、关系分解。

>

以上就是关于请简要说明数据库逻辑设计所包含的工作全部的内容,包括:请简要说明数据库逻辑设计所包含的工作、关系数据库的设计步骤是什么为每张表定义一个组件,有技巧可循吗这个算什么组件与关键字有什么关系、数据库逻辑设计的任务和主要工具是等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9818838.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存