首先说下背景,我毕论有大量涉及到生存曲线分析。针对某个我们已挖掘到白血病中的差异基因,利用了TCGA上的临床数据。
需要的数据:TCGA上的临床数据。当你下下来时会发现有一大堆。这时需要你做的就是筛选你所需要的。你需要的有:目的基因的表达量、患者生存时间、患者生存/死亡状态。这里的目的基因可以是你前期差异基因分析/通路分析/临床分析等所得到的一个或几个基因,你需要在下一步生存分析中进一步验证其预后影响。
软件:SAS、Grapdprism、SPSS、R语言都可以用。但个人感觉SAS的算法更精准,Gradprism在画图上更漂亮且易 *** 作。看你需求了。
检验算法:采用Kaplan-Meier (K-M) 生存分析法来计算生存时间及生存率,采用Log-rank检验比较生存差异,取P值小于005为有统计学意义。
具体 *** 作原理:根据目的基因的表达量,将患者分为高表达组和低表达组。这里的分组方法,可以是根据平均值,也可以是中值。我查阅了大量文献,认为中值更合理。将分组后的两组患者数据导入软件,这里的软件可以是上所述的任意一种,而数据包括了患者生存时间、患者生存/死亡状态。注:表达量只用来分组,不用来画生存分析。
TCGA由NCI牵头,作为美国攻克癌计划的一个大的project,投入巨大的人力和资金,较早的进行深度测序,提供Gene expression, DNA methylation, Copy Number Variant, Mutation还有更深度的exon expression外显子测序结果,其临床数据整理的相对最完整,指标最多。在TCGA中直接下载数据的方法较为繁琐,但是有多个网站提供TCGA数据(包括表达和临床等)完善的整理:GDAC, Cancer Browser和cBioportal是其中整理最为完整和可靠的。GDAC由美国MIT和Harvard共建的Broadinstitute运行,UCSC运行着Cancer Browser 和Xena, cBioportal由MemorialSloan-Kettering Cancer Cente建立,提供较为完善的TCGA数据为基础的各类信息检索服务。
以上就是关于如何处理TCGA的数据全部的内容,包括:如何处理TCGA的数据、tcga数据库firebrowse数据怎么分析、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)