微软模拟飞行,PMDG导航数据问题

微软模拟飞行,PMDG导航数据问题,第1张

你最好截个图,因为有可能是你输入错误还有一定要先装机模在覆盖导航文件NOT IN THE DATABASE 是说数据库里没有你所输入的资料跑道来说一般是在FMC里的DEP/APP那个按键,然后在个选项里选择输入的在一个,如果是EXE的导航数据,请确认一下安装路境是否指向FS的安装安装目录

数据库物理模型设计的目标是根据选定的Oracle数据库系统特点和航空物探数据管理与服务的业务处理需求,确定航空物探数据库最优的物理环境、存取方法和存储结构。即通过数据库物理设计,以便达到物理数据库结构的优化,使得在数据库上运行的各种事务响应时间少、存储空间利用率高、事务吞吐率大。

一、数据库布局

航空物探信息系统的维护数据(部门、岗位、人员、人员权限、数据入库检查规则及数据字典等)相对比较稳定。入库前数据需经过各种检查校对,确认数据正确后才能归档,存入航空物探资料数据库,所以存入资料库前的数据可能经常需要修改和删除,相对变化较大;而存入资料数据库中的数据一般不允许修改和删除,以免误 *** 作破坏资料库数据造成损失。

图2-12 航空物探数据库逻辑模型

图2-13 航空物探数据库布局与数据采集流程图

据此,我们采用图2-13所示的数据库数据采集流程,并将航空物探数据库分为资料采集数据库、资料数据库、系统维护数据库分别进行存储和管理,实现数据的统一管理和统一使用,便于数据入库和易于维护等。

航空物探资料数据库是航空物探所有数据最终存储的场所。资料采集数据库是数据归档存入资料数据库前的临时“集散地”,在此接收各项检查,在确认数据无误后归档到资料数据库,然后删除资料采集数据库中已归档的数据。此外,资料采集数据库中还保存数据入库、维护、检查日志及归档记录。

系统维护数据库,存储系统维护信息(如系统功能、数据库表清单等)、安全信息(如信息系统用户的角色、权限、授权的系统功能等),数据字典、入库数据检查规则等。将其与航空物探数据分开,有利于系统维护和管理。

二、数据库空间设置

数据库空间设置包括磁盘空间设置、应用系统表空间设置、撤销表空间、临时表空间、日志空间和索引空间设置。

(一)磁盘空间设置

磁盘空间设置的目标:磁盘性能不能阻碍实现数据库性能,数据库磁盘必须专用于数据库文件,否则非数据库将会影响到数据库性能,且磁盘空间必须满足恢复和性能的要求。

航空物探数据库服务器为IBMP620小型机,8块硬盘,每块硬盘36GB空间,每块物理磁盘建立一个文件系统。为了提高磁盘的反应时间和寻道时间,提高I/O的存取效率,除了一块硬盘用于UNIX *** 作系统外,其余7块磁盘分别存放资料采集数据库、系统维护数据库-日志文件,资料数据库及资料数据库的大字段数据、索引、回滚段和数据日志文件。

(二)应用系统表空间设置

信息系统数据采集过程对数据的事务 *** 作比较频繁,经常进行数据插入(新数据入库)、修改(入库数据有误)和删除 *** 作(数据重新导入或归档入库),因此航空物探资料采集数据库所在的表空间会很活跃。为了不影响其他I/O的竞争,同时也可以提高数据入库的 *** 作效率(50多年的历史数据需要集中入库),分配一个磁盘空间(36GB)为采集库的表空间。由于采集数据归档入资料库后被删除,同时进行数据入库的项目也不是很多,虽仍保留所有的采集日志数据,一个磁盘空间也足够使用。

航空物探资料数据库的二维表和Oracle大字段(BLOB)分别存放在不同的物理磁盘(每个磁盘36GB)上,对同时存在有表格数据和大字段数据的数据库表(如航迹线数据)时,可以提高磁盘I/O效率。随着数据入库的项目越来越多,需要增加相应的物理磁盘或磁盘阵列。

系统维护数据库相对稳定,占用磁盘空间约500M左右。由于系统磁盘有限,把日志文件存放该磁盘中。

(三)撤销表和临时表空间的设置

在Oracle数据库中,撤销的目的是确保事务的回退和恢复。撤销参数有UNDO_MANAGEMENT、UNDO_TABLESPACE和UNDO_RETENTION。

UNDO_MANAGEMENT参数用于数据库中管理撤销数据的方式,航空物探数据库设置为自动模式(auto)。

UNDO_TABLESPACE参数用于指定数据库中保存撤销数据的撤销表空间名称,航空物探数据库撤销表空间名称为UNDO_ARGS_TBSPACE,空间大小设置为20GB,以确保在保留时间内进行恢复。

UNDO_RETENTION参数用于指定已经提交事务的撤销数据在能够覆盖之前应该保留多长时间,本数据库系统设置为60min。

临时表空间是用以存储大量的排序,与撤销表空间存放在一个物理磁盘上,本数据库系统临时表空间设置为500M。

(四)日志空间设置

日志的主要功能是记录对数据库已做过的全部 *** 作。在系统出现故障时,如果不能将修改数据永久地写入数据文件,则可利用日志得到该修改,所以不会丢失已有 *** 作结果。

日志文件主要是保护数据库以防止故障。为了防止日志文件本身的故障,航空物探数据库系统分别在一个独立磁盘和系统维护库磁盘中存放日志文件。若系统出现故障,在下次打开数据库时Oracle数据库系统自动用日志文件中的信息来恢复数据库文件。

根据航空物探数据库信息系统同时登录的用户数及使用的功能,将日志文件大小设置为10GB。

(五)索引表空间设置

为了提高航空物探信息系统的查询和统计速度,把所有索引空间与应用表空间完全分开,从而提高I/O存取效率。航空物探索引表空间大小设置为10GB。

聚集是表的一种存储方法,一般每个基本表是单独组织的,但对逻辑上经常在一起查询的表,在物理上也邻近存放,这样可减少数据的搜索时间,提高性能。

当几个关系(表)以聚集方式组织时,是通过公共属性的值为表聚集的依据。航空物探数据库系统是以项目标识(PROJ_ID)建立聚集的,所有涉及项目标识的数据库表直接引用项目标识聚集。航空物探聚集表空间与索引表空间相同。

三、数据库参数设置

在数据库创建前需要对如下数据库参数进行设置,航空物探参数文件名为Inito-raargsora,各种参数设置如下:

DB_block_size=16384

DB_name=oraagrs

DB_domain=oraargscom

Compatible=910

Nls_characterset=ZHS16GBK

Open_Cursors=100

DB_files=100

DB_file_mutliblock_read_count=16

Log_checkpoint_interval=256000

Processes=200

四、内存设置

航空物探数据库服务器物理内存为4GB,除部分用于系统开销外,其余全部用于数据库。

Oracle使用共享系统全局区(System Globla Area,SGA)内存来管理内存和文件结构,包含DB_block_Bufers、DB_cache_size、Shared_pool_size、Log_Buffer参数。航空物探数据库系统的全局区内存参数设置如下。

DB_block_Buffers参数为SGA中存储区高速缓存的缓冲区数目,每个缓冲区的大小等于参数DB_block_size的大小,DB_block_Buffers=19200(约300MB)。

Shared_pool_size参数为分配给共享SQL区的字节数,是SGA大小的主要影响者,Shared_pool_size=1228800000(12GB)。

DB_cache_size参数是SGA大小和数据库性能的最重要的决定因素。该值较高,可以提高系统的命中率,减少I/O,DB_cache_size=1024000000(1GB)。

Log_Bufer参数为重做日志高速缓存大小,主要进行插入、删除和修改回退 *** 作,Log_buffer=5120000(5MB)。

五、优化设置

由于航空物探信息系统的采集软件和应用软件是采用MSNETC#进行开发的,应用程序与数据库之间的连接有传统的ODBC和OLEDB两种方式。为了支持ODBC在OLEDB技术上建立了相应的OLEDB到ODBC的调用转换,而使用直接的OLEDB方式则不需转换,从而提高处理速度。

在建立数据库表时,参数Pctfree和Pctused设置不正确可能会导致数据出现行链接和行迁移现象,即同一行的数据被保存在不同的数据块中。在进行数据查询时,为了读出这些数据,磁头必须重新定位,这样势必会大大降低数据库的执行速度。因此,在创建表时应充分估计到将来可能出现的数据变化,正确地设置这两个参数,尽量减少数据库中出现的行链接和行迁移现象。

航空物探资料采集数据库表的插入、修改和删除的频率较高,Pctfree设置为20,Pctused设置为40;系统维护数据库表相对稳定,Pctfree设置为10,Pctused设置为15;资料数据库表除了增加数据外基本不进行修改和删除 *** 作,Pctfree设置为10,Pctused设置为5。

六、扩展性设置

多CPU和并行查询PQO(Parallel Query Option)方式的利用:CPU的快速发展使得Oracle越来越重视对多CPU的并行技术的应用,一个数据库的访问工作可以用多个CPU相互配合来完成。对于多CPU系统尽量采用并行查询选项方式进行数据库 *** 作。航空物探数据库服务器为2个CPU,在程序查询中采用了并行查询的方式。

在航空物探工作量统计、飞行小时统计、测量面积统计和岩石物性统计中,为了加快统计效率,在相应的查询语句中增加了并行查询语句。

随着航空物探高精度测量程度的不断提高,测量数据将越来越大。为了满足航空物探查询效率及发展,将航磁测量数据与校正后航磁测量数据按比例尺分1:20万以下、20万~50万、1:50万以上分别存放3张不同的数据库表。

七、创建数据库

在完成数据库布局、空间设置、内存设置、数据库参数设置、扩展性设置和优化设置后,进行航空物探数据库物理模型设计,即航空物探数据库实体创建。由于航空物探空间数据库逻辑模型是采用ESRI提供的ArcGIS UML构建的Geodatabase模型,因此,使用ESRI公司提供的CaseTools将航空物探数据UML模型图转成空间数据库(Geodatabase)实体(图2-14)。

航空物探属性数据库表(二维表)是采用Power Designer数据库设计平台直接把数据库关系模型生成数据库脚本来创建的。

经过数据库的概念设计、逻辑设计和物理设计,最终生成航空物探数据库。

图2-14 航空物探数据库物理模型实现

八、空间数据的索引机制

对于海量的空间数据库而言,数据库的 *** 作效率是关系到数据库成败的关键问题。为了提高数据的访问、检索和显示速度,数据在加载到数据库时,要素类数据建立了空间索引,栅格数据构建了金字塔结构,对象类数据采用与数据库直接联接的访问机制。

(一)空间索引

为了提高要素类数据的查询性能,在建立航空物探空间数据库时,创建了空间索引机制。常用的空间索引有格网索引、R树索引、四叉树索引等。Geodatabase采用格网索引方式。所谓格网索引是将空间区域划分成适合大小的正方形格网,记录每一个格网内所包含的空间实体(对象)以及每一个实体的封装边界范围,即包围空间实体的左下角和右上角坐标。当用户进行空间查询时,首先计算出用户查询对象所在格网,然后通过格网编号,就可以快速检索到所需的空间实体。

确定适合的格网级数、单元大小是建立空间格网索引的关键。格网太大,在一个格网内有多个空间实体,查询检索的准确度降低。格网太小,则索引数据量成倍增长和冗余,检索的速度和效率较低。数据库的每一数据层采用不同大小、不同级数的空间索引格网单元,但每层最多级数不能超过三级。格网单元的大小不是一个确定性的值,需要根据对象的大小确定。空间索引格网的大小与检索准确度之间的关系如图2-15所示。

选择格网单元的大小遵循下列基本原则:

1)对于简单要素的数据层,尽可能选择单级索引格网。减少RDBMS搜索格网单元索引的级数,缩短空间索引搜索的过程,例如航迹线要素类。

图2-15 索引格网大小与检索准确度的关系

2)如果数据层中的要素封装边界大小变化比较大,应选择2或3级索引格网。Geodata-base最多提供三级格网单元。每一要素封装边界在适合的级内,减少了每一封装边界有多个格网的可能性。在空间索引搜索过程中,RDBMS则必须搜索所有3个格网单元级,这将消耗大量的时间。

3)若用户经常对图层执行相同的查询,最佳格网的大小应是平均查寻空间范围的15倍。

4)格网的大小不能小于要素封装边界的平均大小,为了减少每个格网单元有多个要素封装边界的可能性,格网单元的大小应取平均格网单元的3倍。最佳格网单元的大小可能受图层平均查询的影响。

空间域是按照要素数据集定义的,空间索引格网是按照要素类设置的。它们都是在创建Geodatabase数据库时设置,并一经设置,中间不许改变;所以一定要在充分分析数据的情况下确定它们的值。航空物探数据主要是简单要素类,空间跨度为70°。根据上述原则,航空物探数据选择单级索引格网,格网大小为20°。

(二)金字塔结构

金字塔结构的核心是将栅格数据逐级进行抽稀,形成多级分辨率的重采样数据,并将其分割成块,按一定的文件格式(金字塔文件格式)存储成磁盘文件;在以后进行图像显示处理时,只需将要显示的部分所覆盖的块从磁盘文件直接读进内存缓冲区显示即可。从金字塔的所有层中寻找与所要求显示的比例相近或匹配的一层,并将该层的从某一点起的一定范围的图像所覆盖的所有块加载到内存缓冲区,提取所需部分并形成图像。

金字塔算法(图2-16)是通过获取显示时所需要的一定分辨率的数据来提高显示速度。使用金字塔数据格式后,在显示全图时仅需要显示一个较低分辨率的数据,这样既能加快显示速度,又不会影响显示效果。放大图像,尽管显示图像分辨率提高,由于显示区域减小,所以显示速度不会下降。如果没有为栅格数据建立金字塔数据,则每次显示都会读取整个数据,然后进行重采样得到显示所需要的分辨率,明显地降低了显示速度。

图2-16 金字塔压缩示意图

金字塔数据重采样方式有:最近邻法、双线性内插和立方卷积。其中最近邻法适用于离散数据,而双线性内插法和立方卷积法适合于连续数据。

在ArcGISEngine中提供了IRasterPyramid和IRasterPyramid2接口来实现金字塔数据的建立,而建立的数据保存在rrd格式的文件中。

(三)空间域定义

空间域是指数据的有效空间范围,即Geodatabase数据库的最大等效坐标的值域范围,其定义主要是指比例系数和MinX、MinY的计算。

因为使用整数比浮点数有更高的压缩率,并且对整数进行二进制搜索比较快,所以多用户Geodatabase以4字节正整数存储坐标,其最大值为32位正整数所能表示的范围是214亿(2147483647),整数的范围称为空间域。在创建Geodatabase数据库时需要定义合适的比例系数。大的整数值将消耗大量的计算机物理内存,所以选定的比例系数最好不要大于必须的比例系数。空间域随坐标系的单位变化而变化。

比例系数和空间域之间成反比例关系,比例系数越大(存储单位越小),表达的空间域也越小。为了使目标数据都存储在系统中,需要谨慎地设置比例系数。将目标数据的宽度和高度较适中的数值乘以比例系数,如果结果小于214亿,则比例系数是合适的。

航空物探数据模型是为我国的航空物探行业数据建库设计的,它支持的空间数据的坐标范围为我国领土覆盖的海陆空间,最低纬度为赤道。根据概念设计的分析,航空物探数据模型采用的是地理坐标系,坐标系单位是度,基准是Beijing_1954,要求存储的坐标数据精度达到001m。在赤道处,赤道圆周长为400756946m,则每度弧长=400756946×100/360cm=11132137389cm,即1cm对应8983000883E-8°。所以,航空物探数据模型的比例系数取为898E-8,即存储单位为898E-8°,可满足1cm精度要求。

将空间域移动到目标数据范围之前,首先找到空间域在存储单位的中心位置,目的是在必要时向各个方向扩展。4字节正整数可表示的坐标范围:2147483647×898E-8=19284。我国的领土范围是东经70°~140°,北纬0°~60°。所以,选取的比例系数是合适的。把空间域坐标系中心定为90°,然后,计算空间域的MinX、MinY。

MinX=((70+140)÷2)-90=15

MinY=((0+60)÷2)-90=-60

所以坐标的存储数据是:

X_Storage=(X-MinX)/898E-8

Y_Storage=(Y-MinY)/898E-8

这里为大家推荐一款在Mac系统平台上的数据库管理软件,这款名为sqleditor for Mac的软件能够帮助用户有效的进行数据库管理。作为Mac平台上一款深受用户欢迎的数据库管理软件,这款软件拥有连接 Oracle、 DB2、 SQL Server、 Sybase 和其他 ODBC 兼容的数据库的功能,这些功能能够快速帮助用户建立并管理数据库。

sqleditor for Mac是用于OS X的SQL数据库设计和实体关系图(ERD)工具。它通过拖放,点击来手动替换键入的SQL,从而使数据库创建变得更快更轻松。如果你已经有了一个数据库,那么sqleditor for Mac可以通过逆向工程图来帮助你看到它的样子。或者使用sqleditor for Mac通过新的设计报告导出器创建文档。如果您需要设计数据库或者您有现有的数据库进行管理,sqleditor for Mac可能很有用。如果您正在学习数据库设计,这也很有用。

点击鼠标 添加表和列,索引和外键。查看您创建的所有内容都显示在您的面前。您可以缩小以查看结构的概述,放大以查看详细信息,所有缩放级别的所有内容都可以编辑。在检查面板显示对象特定的编辑选项为每个对象类型,你可以同时编辑多个对象。

将其导入到sqleditor中,轻松进行更改,然后使用您所做的更改更新数据库。使用diff侧边栏查看您在当前会话中所做的更改,或与其他文件进行比较。sqleditor可以从源SQL文件和实时数据库创建图表。您还可以导入和导出Ruby on Rails迁移文件。sqleditor会记录它使用的所有指令,以便您可以查看更改的内容,并且如果要首先检查正确性,则可以在导出之前预览更改。

您可以导出到主要的数据库系统,包括MySQL,SQLite,Postgres和Oracle。sqleditor自定义生成的SQL以使用您想要的方言。sqleditor还支持编辑Ruby on Rails迁移和模式文件。我们也有一个实验性的Django插件。

流线型单窗口界面

我们将检查器和所有浮动调色板合并到主窗口中。这意味着更少的屏幕杂乱,它在全屏模式下更好,并且在较小的屏幕上更有效。

Javascript插件系统

使用Javascript创建自己的SQL方言以便导出。我们的新报告生成器也使用javascript,因此很容易定制。

性能改进

sqleditor 3支持更大的文档并加快加载速度。它还具有许多其他性能和稳定性改进

更好的飞行前飞行和更多的飞行前行动

预检系统已得到改进,新的错误显示和单击突出显示有错误的表。我们还添加了一些新的预检 *** 作来捕获数据库设计中的新类型错误。

设计报告生成器

立即生成表和视图的完整列表,列出列,索引,外键和约束。它还包括您在sqleditor中设置的或我们从数据库系统中提取的任何注释或注释。使用我们的报告模板,或使用车把兼容模板创建您自己的模板。

这款sqleditor for Mac能够满足对数据库管理的所有需求,能够帮助用户快速管理多个数据源,并根据自己的需要建立合适的数据库图形。如果您想要创建管理SQL数据库图形,这款软件是不错的选择。

一、规范数据入库流程

规范化的 *** 作流程是避免 *** 作错误产生的有效手段。据此,对航空物探数据入库过程中的数据质量检查内容和方法进行了分析,归纳出系统检查9项和拓扑检查5项(表5-5)。考虑到在数据入库过程中,需要给数据采集人员授予数据库数据编辑和删除权限(以便编辑录入的错误数,删除导入的不正确数据),在编辑或删除数据库数据时,有可能错误地编辑或删除已归档数据,破坏归档数据的完整性和正确性等因素,提出了航空物探数据库入库数据质量检查的规范化流程(图5-2)。

表5-5 入库数据系统检查和拓扑检查

1)创建项目,在数据入库前先创建项目,按项目导入或录入数据。

2)入库前系统检查,导入或录入的入库数据必须通过系统的入库前检查(数据唯一性、数据类型、缺项检查),才能保存到采集库中。

3)数据进入采集库后,须接受入库后系统检查。若是空间数据必须接受拓扑检查,再与原数据文件进行逐字节比较检查,均通过后,进人工检查。

4)人工检查与人工复核,对项目概况数据、空间要素类数据(图形和属性)、文字数据、图件数据、可制成图件的对象类数据应进行人工检查与人工复核。检查方法是人工比对。该方法劳动强度大,检查人员要有较强的责任心才能发现其中的错误。人工检查与人工复核的工作内容相同,系统要求人工检查与人工复核必须由不同人员完成,加强数据检查力度,尽量消除人为因素造成的错误。

图5-2 规范化的数据入库流程

5)系统归档检查,对入库数据的非空字段进行的检查。系统归档检查通过后,入库数据可归档存入资料库。

经测试,严格按照该数据入库流程开展数据入库工作。航空物探资料库数据与入库前原数据文件数据的一致性可达100%。

该流程将入库数据与资料库数据分离,单独建立一个数据采集数据库(简称“采集库”),把待入库数据暂存在采集库中。入库数据在采集库中接受各项质量检查和编辑,或删除 *** 作,直至达到数据入库质量要求,归档进入资料库(进入资料库的数据除数据库管理员外其他用户是无权对其实施编辑或删除 *** 作的),保证资料库数据的一致性和完整性,为整体提高航空物探数据库的质量提供了保障。

二、规则化数据检查方法

50多年来航空物探取得大量的基础资料和成果资料,这些资料在地学基础研究、油气资源评价等领域发挥的重要作用日益显现。人们越来越重视利用航空物探资料来解决所遇到的地质问题等,同时人们也很想了解所用资料的来源、质量等信息(如资料的测量年代、测量方法、仪器精度、飞行高度、定位精度,数据处理方法等),来评价问题解决的可信度。这也正是本信息系统建设者想要给用户提供的。历史已既成事实,许多与资料质量有关的信息,例如在使用数字收录以前有不少项目的测量仪器精度、飞行高度、定位精度等现已处可寻。

过去的不足证明现在的进步,尊重历史尽力适应未来的技术发展,是本信息系统建设所遵循的宗旨。因此,根据资料的实际情况,提出了入库数据有效性检查的规则化方法,较好地解决了不同年代资料信息不齐全的数据入库质量检查问题。

按照通常做法,在软件代码中直接编写出每个数据库表需要做检查字段的有效性检查代码。

//通常方法的数据进行质量检查

//选择表名,分别为每个表编写检查代码

Switch(表名)

{

Case表名1:

检查数据//获取表的检查数据

Switch(表字段名)

{

Csae表字段1://如字段检查项包括非空检查、范围检查等

//依据不同检查规则检查数据

If(检查数据[表字段1]!=空)…//非空检查

…//其他检查

If((检查数据[表字段1]>值1)&&(检查数据[表字段1]<值n))//范围检查

Break;

…//对应不同字段名

Csae表列名n:

…//对应字段数据检查

Break;

}

Break;

…//对应不同表数据检查

Csae表名n:

…//对应表数据检查

Break;

}

本系统采用规则化方法检查入库数据。在完成数据库结构设计之后,针对每张数据库表中每个字段制定了入库数据正确性的检查规则,建立动态检查规则表,针对不同的检查规则编写检查函数,从数据库中获取被检查表数据库字段的检查规则,对入库数据进行检查的。规则化方法代码实现的示例如下:

//本系统对表数据进行质量检查

获取检查数据//检查数据包括表名、字段名、数据

获取规则数据//检查规则包括字段名、检查类型等

获取规则值数据//检查规则对应的值

//依据不同检查规则检查数据

Switch(规则数据[检查规则])

{

Case检查规则规则1://非空检查

If(检查数据[检查字段名]!=空)……

Break;

…//其他检查规则

Csae检查规则规则n://选择范围检查

If(规则值数据is包含检查数据[检查字段名])…

Break;

}

系统检查采用传统检查方法实现代码量约15345行(表5-6),代码开发工作量很大,且灵活性差,不利于后期代码维护和扩展,如添加表或表添加检查字段后都需要对代码进行重新修改和编译。而本系统的规则化方法代码量仅495行(表5-6),只有传统检查方法代码的322%,且添加表或表添加检查字段后不需要修改代码;用户在数据入库时,根据实际需要直接修改检查规则表即可。

表5-6 系统检查两种实现方式代码量对比表

以上就是关于微软模拟飞行,PMDG导航数据问题全部的内容,包括:微软模拟飞行,PMDG导航数据问题、数据库物理模型、快速进行数据库管理的Mac软件等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9859914.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存