已经有ASTER各典型地物光谱数据库,请问如何利用其求出各地物的地表比辐射率能否告诉我详细步骤.谢谢!

已经有ASTER各典型地物光谱数据库,请问如何利用其求出各地物的地表比辐射率能否告诉我详细步骤.谢谢!,第1张

如果波谱库保存的是方向半球反射率即可用1-反射率获得比辐射率,如果波谱库保存的仅为双向反射率,那么这条波谱就不能用来算比辐射率了。宽波段的比辐射率可以根据光谱响应函数计算,你只需要离散化的求和就行了,例如

emis(宽)=sum(emis(窄)planck(T,λ)response_functiondelta( λ))/sum(planck(T,λ)response_functiondelta( λ)),其中delta( λ)是你离散化的时候,相邻波长间的距离。如果你事先将emis插值成等波长的曲线,那么上式可以简化为:

emis(宽)=sum(emis(窄)planck(T,λ)response_function)/sum(planck(T,λ)response_function),如果没有光谱响应函数,就取值1。

(1)发射光谱 物体发光直接产生的光谱叫做发射光谱.发射光谱有两种类型:连续光谱和明线光谱.

连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱.炽热的固体、液体和高压气体的发射光谱是连续光谱.例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱.

只含有一些不连续的亮线的光谱叫做明线光谱.明线光谱中的亮线叫做谱线,各条谱线对应于不同波长的光.稀薄气体或金属的蒸气的发射光谱是明线光谱.明线光谱是由游离状态的原子发射的,所以也叫原子光谱.观察气体的原子光谱,可以使用光谱管,它是一支中间比较细的封闭的玻璃管,里面装有低压气体,管的两端有两个电极.把两个电极接到高压电源上,管里稀薄气体发生辉光放电,产生一定颜色的光.

观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱.

实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构.

(2)吸收光谱 高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产

光谱生的光谱,叫做吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线.这就是钠原子的吸收光谱.值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光.因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少

当光谱打出来的元素有问号时,通常是由于光谱仪探测到的光谱线在该仪器的数据库中找不到对应的元素而导致的。

在光谱仪中,如果要确定样品的成分,需要将其发射光谱和标准元素的光谱进行比较。发射光谱中的每一条线都对应着元素的一个特定谱线,但是某些地方可能会出现不明显或不常见的谱线,或者出现与已知元素的谱线重叠的情况,这些情况都可能导致光谱打出来的元素有问号。

如果样品中出现不明显或不常见的元素,可能需要更高级别的仪器来进行鉴定。如果是与已知元素的谱线重叠,可以通过调整仪器的参数来改变谱线的位置或强度,或者使用其他仪器或方法进行测量,以更准确地确定样品成分。

如何在spectral database for organic compounds sdbs中查阅物质的红外光谱

红外光谱基本都是对物质进行定性分析。可以对进行定量分析,下面是网上找的几种方法,希望对你有所帮助。

红外光谱定量分析是借助于对比吸收峰强度来进行的,只要混合物中的各组分能有一个特征的,不受其他组分干扰的吸收峰存在即可。原则上液体、固体和气体样品都可应用红外光谱法作定量分析:

1定量分析原理

红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于朗伯-比尔定律。

该定律可写成:A=abc

上式中A为吸光度(absorbance),也可称光密度(optical density),它没有单位。系数a称作吸收系数(absorptivity),也称作消光系数(extinction coeffieient),是物质在单位浓度和单位厚度下的吸光度,不同物质有不同的吸收系数a值。

且同一物质的不同谱带其a值也不相同,即a值是与被测物质及所选波数相关的一个系数。因此在测定或描述吸收系数时,一定要注意它的波数位置。

当浓度c选用mol·L-1为单位,槽厚b以cm为单位时,则a值的单位为:L·cm-1·mol-1,称为摩尔吸收系数,并常用ε表示。吸收系数是物质具有的特定数值,文献中的数值理应可以通用。但是,由于所用仪器的精度和 *** 作条件的不同,所得数值常有差别,因此在实际工作中,为保证分析的准确度,所用吸收系数还得借助纯物质重新测定。

在定量分析中须注意下面两点:

1)吸光度和透过率是不同的两个概念、透过率和样品浓度没有正比关系,但吸光度与浓度成正比。

2)吸光度的另一可贵性使它具有加和性。若二元和多元混合物的各组分在某波数处都有吸收,则在该波数处的总吸光度等于各级分吸光度的算术和,但是样品在该波数处的总透过率并不等于各组分透过率的和。

2定量分析方法的介绍

红外光谱定量方法主要有测定谱带强度和测量谱带面积购两种。此外也有采用谱带的一阶导数和二阶导数的计算方法,这种方法能准确地测量重叠的谱带,甚至包括强峰斜坡上的肩峰。

红外光谱定量分忻可以采用的方沦很多,下面我们介绍几种常用的测定方法。

(1)直接计算法

这种方法适用于组分简单、特征吸收带不重叠、且浓度与吸收度呈线性关系的样品。

从谱图上读取透过率数值,按A=lg(I0/I)(I0为入射光强度,I为透射光强度)的关系计算出A值,再按朗伯-比尔定律算出组分含量c,从而推算出质量分数。这一方法的前提是需用标准样品测得a值。分析精度要求不高时,可用文献报导的a值。

(2)工作曲线法

这种方法适用于组分简单、特征吸收谱带重叠较少,而浓度与吸收度不完全呈线性关系的样品。

将一系列浓度的标准样品的溶液,在同一吸收池内测出需要的谱带,计算出吸收度值作为纵坐标,再以浓度为横坐标,作出相应的工作曲线。由于是在同一吸收池内测量,故可获得A~c的实际变化曲线。

由于工作曲线是从实际测定中获得的,它真实地反映了被侧组分的浓度与吸收度的关系。因此即使被测组分在样品中不服从Beer定律,只要浓度在所测的工作曲线范围内、也能得到比较准确的结果。同时,这种方法可以排除许多系统误差,同时在这种定量方法中,分析波数的选择同样是重要的,分析波数只能选在被测组分的特征吸收峰处。溶剂和其他组分在这里不应有吸收峰出现,否则将引起较大的误差。

3)解联立方程法

解联立方程法运用的对象是组分众多而波带又彼此严重重叠的样品,通常无法选出较好的特征吸收谱带。采用这一方法的条件是必须具备各个组分的标准样品且各组分在溶液中是遵守Beer定律的。定量分析可以根据吸光度的加和特证来进行。

例如某一混合物由n个组分所组成各组分的浓度分别为c1,c2,c3,…,cn,它们在分析波数ν处的吸收系数各为av1,av2,…,avn,则样品在这个分析波数处的总吸光度为:

Aν=A1v+A2v++Anv=av1bc1+av2bc2++avnbcn

样品中共有n个组分,每一组分都有一个以它为主要贡献的谱带和对应的波数值,可列出相应的方程组。

如测出各个a值,则各个未知浓度c就可从联立方程式中解得。

a值的求法是将样品配成一定浓度后测出红外光谱,再求出某一波数处的吸光度值,由于c利b是已知的实验值,用Beer定律A=abc关系即可求得各a值。

联立方程定量分析应注意以下几点:

1)选择合适的波数点。在此点波数只应以某—组分的贡献为主,其他组分在此都只有较小的吸收贡献,

2)读准吸光度。在实验时必须读谱图上那些没有吸收峰值的某波数上的吸光度数值。在谱带的斜坡上更需注意所读数据的准确性。

3)求a值时选取合适的浓度。在测定a值时。各组分的纯品配制浓度应接近未知样品中该组分的浓度,且应在该量附近配制4~5个点以求出较为可靠的a值,或据此绘出工作曲线。

由于解联立方程的计算工作量很大,现代的红外光谱仪器均带有功能良好的计算机,借助所配备的计算机,运用线件代数中矩阵法解联立方程成为十分实用的方法。

红外定量分析的准确度,若不考虑样品称量、溶液配制和槽厚在测定中所引起的误差。主要考虑吸光度的测定所引起的误差,±1%的误差是它的最佳极限值,实际上是比±1%大,因此红外光谱用得最多的还是定性分析。

以上就是关于已经有ASTER各典型地物光谱数据库,请问如何利用其求出各地物的地表比辐射率能否告诉我详细步骤.谢谢!全部的内容,包括:已经有ASTER各典型地物光谱数据库,请问如何利用其求出各地物的地表比辐射率能否告诉我详细步骤.谢谢!、谁能帮我总结下光谱的知识!、光谱打出来的元素有号是怎么回事等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9875054.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存