处理高并发的方法不止三种。
1:系统拆分
将一个系统拆分为多个子系统,用dubbo来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,这样就可以抗高并发。
2:缓存,必须得用缓存
大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。毕竟人家redis轻轻松松单机几万的并发,没问题的。所以可以考的虑考虑项目里,那些承载主要请求读场景,怎么用缓存来抗高并发。
3:MQ(消息队列),必须得用MQ
可能还是会出现高并发写的场景,比如说一个业务 *** 作里要频繁搞数据库几十次,增删改增删改,那高并发绝对搞挂系统,人家是缓存你要是用redis来承载写那肯定不行,数据随时就被LRU(淘汰掉最不经常使用的)了,数据格式还无比简单,没有事务支持。
所以该用mysql还得用mysql,用MQ,大量的写请求灌入MQ里,排队慢慢玩儿,后边系统消费后慢慢写,控制在mysql承载范围之内。所以得考虑考虑你的项目里,那些承载复杂写业务逻辑的场景里,如何用MQ来异步写,提升并发性。MQ单机抗几万并发也是可以的。
4:分库分表
可能到了最后数据库层面还是免不了抗高并发的要求,那么就将一个数据库拆分为多个库,多个库来抗更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高sql跑的性能。
5:读写分离
这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。
问题一:java程序员面试时被问到:如何在j2ee项目中处理高并发量访问? 该怎么回答? 请仔细看题干再回答 blog.csdn/y_h_t/article/details/6322823你是一名java程序员,这些应该知道些吧
问题二:如何处理高并发带来的系统性能问题 那必须了解linux中的基本使用,比如如何找到某个路径,如何打开一个文件,如何编辑修改一个文件等等,那就是linux中命令的使用;还有就是必须知道linux服务器中所用的什么服务器(有weblogic、websphere等等);精通相关服务器的重要属性配置等等。
问题三:JAVA中高访问量高并发的问题怎么解决? 你指的高并发量大概有多少?
几点需要注意:
尽量使用缓存,包括用户缓存,信息缓存等,多花点内存来做缓存,可以大量减少与数据库的交互,提高性能。
用jprofiler等工具找出性能瓶颈,减少额外的开销。
优化数据库查询语句,减少直接使用hibernate等工具的直接生成语句(仅耗时较长的查询做优化)。
优化数据库结构,多做索引,提高查询效率。
统计的功能尽量做缓存,或按每天一统计或定时统计相关报表,避免需要时进行统计的功能。
能使用静态页面的地方尽量使用,减少容器的解析(尽量将动态内容生成静态html来显示)。
解决以上问题后,使用服务器集群来解决单台的瓶颈问题。
基本上以上述问题解决后,达到系统最优。
至于楼上有人提到别用JAVA来做,除非是低层的连接数过大(如大量的端口占用需求),这种情况下考虑直接C来写,其他的可以用JAVA来做。
问题四:项目中怎么控制多线程高并发访问 synchronized关键字主要解决多线程共享数据同步问题。
ThreadLocal使用场合主要解决多线程中数据因并发产生不一致问题。
ThreadLocal和Synchonized都用于解决多线程并发访问。但是ThreadLocal与synchronized有本质的区别:
synchronized是利用锁的机制,使变量或代码块在某一时该只能被一个线程访问。而ThreadLocal为每一个线程都提供了变量的副本,使 得每个线程在某一时间访问到的并不是同一个对象,这样就隔离了多个线程对数据的数据共享。而Synchronized却正好相反,它用于在多个线程间通信 时能够获得数据共享。
Synchronized用于线程间的数据共享,而ThreadLocal则用于线程间的数据隔离。当然ThreadLocal并不能替代synchronized,它们处理不同的问题域。Synchronized用于实现同步机制,比ThreadLocal更加复杂。
1、Java中synchronized用法
使用了synchronized关键字可以轻松地解决多线程共享数据同步问题。
synchronized关键字可以作为函数的修饰符,也可作为函数内的语句,也就是平时说的同步方法和同步语句块。如果再细的分 类,synchronized可作用于instance变量、object reference(对象引用)、static函数和class literals(类名称字面常量)身上。
synchronized取得的锁都是对象;每个对象只有一个锁(lock)与之相关联;实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。
问题五:如何处理高并发或列举处理高并发的业务逻辑 1、提高系统的并发能力2、减轻数据库的负担这两种用途其实非常容易理解。由于memcached高性能,所以可以同时服务于更多的连接,大大提高了系统的并发处理的能力。另外,memcached 通常部署在业务逻辑层(前台应用)和存储层(主指数据库)之间,作为数据库和前台应用的数据缓冲,因此可以快速的响应前端的请求,减少对数据库的访问。
问题六:数据库怎样处理高并发 1.用一个标识,在选择那张票的时候先用(Update 表 set 票flag=‘占用了!’ where 票flag=‘未占用’ and ........)这样是保险的,不可能存在并发问题,这就牵扯到sql锁机制问题了,你可以测试一下,其实sql中update是先查询出然后删除再添加,但由于使用了update,过程中就自动加锁了,很方便吧2.加锁。Microsoft® SQL Server™ 2000 使用锁定确保事务完整性和数据库一致性。锁定可以防止用户读取正在由其他用户更改的数据,并可以防止多个用户同时更改相同数据。如果不使用锁定,则数据库中的数据可能在逻辑上不正确,并且对数据的查询可能会产生意想不到的结果。虽然 SQL Server 自动强制锁定,但可以通过了解锁定并在应用程序中自定义锁定来设计更有效的应用程序。
问题七:数据库怎样处理高并发 理论上不限制并发连接数的.就是服务器受硬件的限制.过高的并发是会使服务器无法完成并发任务,而造成服务器死机或者假死机.不过数据库软件可以优化并发连接,使并发持续的时间更短,以减起服务器的负担,但是一台服务器不能完成几十万的并发.
问题八:如何处理大量数据并发 *** 作 如何处理大量数据并发 *** 作
文件缓存,数据库缓存,优化sql,数据分流,数据库表的横向和纵向划分,优化代码结构!
锁述的概
一. 为什么要引入锁
多个用户同时对数据库的并发 *** 作时会带来以下数据不一致的问题:
丢失更新
A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统
脏读
A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致
不可重复读
A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致
并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些 *** 作以避免产生数据不一致
二 锁的分类
锁的类别有两种分法:
1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁
MS-SQL Server 使用以下资源锁模式。
锁模式 描述
共享 (S) 用于不更改或不更新数据的 *** 作(只读 *** 作),如 SELECT 语句。
更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。
排它 (X) 用于数据修改 *** 作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。
意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。
架构锁 在执行依赖于表架构的 *** 作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。
大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。
共享锁
共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。
更新锁
更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此 *** 作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。
若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。
排它锁
排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。
意向锁
意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁......>>
问题九:高并发是什么和如何解决 数据库建立多表关联,关键业务数据字段和查询字段建立索引,对唯一性建立好,同时多任务并发时程序设计时注意数据的合理性检验和用户处理数据有问题时的友好提示见面,建立好的结构文档说明,同时对关键字段的关系型作好记录,有效地设计多表的结构安排,尽量减少数据的冗余,同时又要避免对历史数据的影响,保持良好的数据管理
问题十:如何处理高并发量的HTTP请求 尽量减少页面的HTTP请求,可以提高页面载入速度。减少页面中的元素网页中的的图片、form、flash等等元素都会发出HTTP请求,尽可能的减少页面中非必要的元素,可以减少HTTP请求的次数。
限流算法目前程序开发过程常用的限流算法有两个:漏桶算法和令牌桶算法。
漏桶算法
漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水。当请求过多时,水直接溢出。可以看出,漏桶算法可以强制限制数据的传输速度。如图所示,把请求比作是水滴,水先滴到桶里,通过漏洞并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。
图片来自网络
漏桶的出水速度是恒定的,那么意味着如果瞬时大流量的话,将有大部分请求被丢弃掉(也就是所谓的溢出)。
令牌桶算法
令牌桶算法的原理是系统以一定速率向桶中放入令牌,如果有请求时,请求会从桶中取出令牌,如果能取到令牌,则可以继续完成请求,否则等待或者拒绝服务。这种算法可以应对突发程度的请求,因此比漏桶算法好。
图片来自网络
漏桶算法和令牌桶算法的选择
两者的主要区别漏桶算法能够强行限制处理数据的速率,不论系统是否空闲。而令牌桶算法能够在限制数据的平均处理速率的同时还允许某种程度的突发流量。如何理解上面的含义呢?漏桶算法,比如系统吞吐量是 120/s,业务请求 130/s,使用漏斗限流 100/s,起到限流的作用,多余的请求将产生等待或者丢弃。对于令牌桶算法,每秒产生 100 个令牌,系统容量 200 个令牌。正常情况下,业务请求 100/s 时,请求能被正常被处理。当有突发流量过来比如 200 个请求时,因为系统容量有 200 个令牌可以同一时刻处理掉这 200 个请求。如果是漏桶算法,则只能处理 100 个请求,其他的请求等待或者被丢弃。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)