http://yann.lecun.com/exdb/mnist/ 没错,就是它!这个网页上面有四个压缩包的链接,下载下来吧少年!然后别忙着关掉这个网页,因为后面的读取数据还得依靠这个网页的说明。
下面用其中一个包t10k-images_idx3为例子,写代码说明如何使用这个数据库。
这是从verysource.com上面下载的源码,赞一个!and再赞一个!
% Matlab_Read_t10k-images_idx3.m
% 用于读取MNIST数据集中t10k-images.idx3-ubyte文件并将其转换成bmp格式图片输出。
% 用法:运行程序,会d出选择测试图片数据文件t10k-labels.idx1-ubyte路径的对话框和
% 选择保存测试图片路径的对话框,选择路径后程序自动运行完毕,期间进度条会显示处理进度。
% 图片以TestImage_00001.bmp~TestImage_10000.bmp的格式保存在指定路径,10000个文件占用空间39M。。
% 整个程序运行过程需几分钟时间。
% Written By DXY@HUST IPRAI
% 2009-2-22
clear all
clc
%读取训练图片数据文件
[FileName,PathName] = uigetfile('*.*','选择测试图片数据文件t10k-images.idx3-ubyte')
TrainFile = fullfile(PathName,FileName)
fid = fopen(TrainFile,'r')%fopen()是最核心的函数,导入文件,‘r’代表读入
a = fread(fid,16,'uint8')%这里需要说明的是,包的前十六位是说明信息,从上面提到的那个网页可以看到具体那一位代表什么意义。所以a变量提取出这些信息,并记录下来,方便后面的建立矩阵等动作。
MagicNum = ((a(1)*256+a(2))*256+a(3))*256+a(4)
ImageNum = ((a(5)*256+a(6))*256+a(7))*256+a(8)
ImageRow = ((a(9)*256+a(10))*256+a(11))*256+a(12)
ImageCol = ((a(13)*256+a(14))*256+a(15))*256+a(16)
%从上面提到的网页可以理解这四句
if ((MagicNum~=2051)||(ImageNum~=10000))
error('不是 MNIST t10k-images.idx3-ubyte 文件!')
fclose(fid)
return
end %排除选择错误的文件。
savedirectory = uigetdir('','选择测试图片路径:')
h_w = waitbar(0,'请稍候,处理中>>')
for i=1:ImageNum
b = fread(fid,ImageRow*ImageCol,'uint8') %fread()也是核心的函数之一,b记录下了一副图的数据串。注意这里还是个串,是看不出任何端倪的。
c = reshape(b,[ImageRow ImageCol])%亮点来了,reshape重新构成矩阵,终于把串转化过来了。众所周知图片就是矩阵,这里reshape出来的灰度矩阵就是该手写数字的矩阵了。
d = c'%转置一下,因为c的数字是横着的。。。
e = 255-d%根据灰度理论,0是黑色,255是白色,为了弄成白底黑字就加入了e
e = uint8(e)
savepath = fullfile(savedirectory,['TestImage_' num2str(i,'d') '.bmp'])
imwrite(e,savepath,'bmp')%最后用imwrite写出图片
waitbar(i/ImageNum)
end
fclose(fid)
close(h_w)
在选择好的路径中,就有了一大堆MNIST的手写数字的图片。想弄哪个,就用imread()弄它!
批量输入后,如何使用numpy矩阵计算的方法计算各权值梯度,提高计算速度
def backprop(self, x, y): #x为多维矩阵。每列为一个x值。 y为多维矩阵。每列为一个y值。
batch_num=x.shape[1]
#print(x.shape)
#print(y.shape)
"""创建两个变量,用来存储所有b值和所有w值对应的梯度值。初始化为0.nabla_b为一个list,形状与biases的形状完全一致。nabla_w 为一个list,形状与weights的形状完全一致。
"""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
"""activations,用来所有中间层和输出层在一次前向计算过程中的最终输出值,即a值。该值记录下来,以供后期使用BP算法求每个b和w的梯度。
"""
activation = x #x为本批多个x为列组成的矩阵。
activations = [x] # list to store all the activations, layer by layer
"""zs,用来所有中间层和输出层在一次前向计算过程中的线性输出值,即z值。该值记录下来,以供后期使用BP算法求每个b和w的梯度。
"""
zs = [] # list to store all the z vectors, layer by layer ,zs的每个元素为本batch的x对应的z为列构成的矩阵。
"""
通过一次正向计算,将中间层和输出层所有的z值和a值全部计算出来,并存储起来。供接下来求梯度使用。
"""
for b, w in zip(self.biases, self.weights):
#print(w.shape)
#print(np.dot(w, activation).shape)
#print(b.shape)
z = np.dot(w, activation)+b #z为本batch的x对应的z为列构成的矩阵。
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
"""
以下部分是采用BP算法求解每个可训练参数的计算方法。是权重更新过程中的关键。
"""
# backward pass
# 求出输出层的delta值
delta = ((activations[-1]-y) * sigmoid_prime(zs[-1]))
nabla_b[-1] = delta.mean(axis=1).reshape(-1, 1)
nabla_w[-1] =np.dot(delta,activations[-2].transpose())/batch_num
# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It's a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in range(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = (np.dot(self.weights[-l+1].transpose(), delta) * sp)
nabla_b[-l] = delta.mean(axis=1).reshape(-1, 1)
nabla_w[-l] =np.dot(delta,activations[-l-1].transpose())/batch_num
return (nabla_b, nabla_w)
##梯度计算后,如何更新各权值
def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
is the learning rate."""
""" 初始化变量,去存储各训练参数的微分和。
"""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
""" 循环获取batch中的每个数据,获取各训练参数的微分,相加后获得各训练参数的微分和。
"""
x_batch=None
y_batch=None
for x, y in mini_batch:
if( x_batch is None):
x_batch=x
else:
x_batch=np.append(x_batch,x,axis=1)
if( y_batch is None):
y_batch=y
else:
y_batch=np.append(y_batch,y,axis=1)
delta_nabla_b, delta_nabla_w = self.backprop(x_batch, y_batch)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
""" 使用各训练参数的平均微分和与步长的乘积,去更新每个训练参数
"""
self.weights = [w-eta*nw
for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-eta*nb
for b, nb in zip(self.biases, nabla_b)]
1 cifar10数据库60000张32*32 彩色图片 共10类
50000张训练
10000张测试
下载cifar10数据库
这是binary格式的,所以我们要把它转换成leveldb格式。
2 在../caffe-windows/examples/cifar10文件夹中有一个 convert_cifar_data.cpp
将他include到MainCaller.cpp中。如下:
编译....我是一次就通过了 ,在bin文件夹里出现convert_cifar_data.exe。然后 就可以进行格式转换。binary→leveldb
可以在bin文件夹下新建一个input文件夹。将cifar10.binary文件放在input文件夹中,这样转换时就不用写路径了。
cmd进入bin文件夹
执行后,在output文件夹下有cifar_train_leveldb和cifar_test_leveldb两个文件夹。里面是转化好的leveldb格式数据。
当然,也可以写一�¸.batæ件å¤çï¼æ¹ä¾¿ä»¥åå次使ç¨ã
3 ä¸é¢æ们è¦æ±æ°æ®å¾åçåå¼
ç¼è¯../../tools/comput_image_mean.cpp
ç¼è¯æååãæ¥ä¸æ¥æ±mean
cmdè¿å ¥binã
æ§è¡åï¼å¨binæ件夹ä¸åºç°ä¸ä¸ªmean.binaryprotoæ件ï¼è¿å°±æ¯æéçåå¼æ件ã
4 è®ç»cifarç½ç»
å¨.../examples/cifar10æ件夹éå·²ç»æç½ç»çé ç½®æ件ï¼æ们åªéè¦å°cifar_train_leveldbåcifar_test_leveldb两个æ件夹è¿æmean.binaryprotoæ件æ·å°cifar0æ件夹ä¸ã
ä¿®æ¹cifar10_quick_train.prototxtä¸çsource: "cifar-train-leveldb" mean_file: "mean.binaryproto" åcifar10_quick_test.prototxtä¸çsource: "cifar-test-leveldb"
mean_file: "mean.binaryproto"å°±å¯ä»¥äºï¼
åé¢åè®ç»å°±ç±»ä¼¼äºMNISTçè®ç»ãåä¸ä¸ªtrain_quick.batï¼å 容å¦ä¸ï¼
[plain] view plaincopy
copy ..\\..\\bin\\MainCaller.exe ..\\..\\bin\\train_net.exe
SET GLOG_logtostderr=1
"../../bin/train_net.exe" cifar10_quick_solver.prototxt
pause
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)