数组是最简单也是最常见的数据结构。它们的特点是可以通过索引(位置)轻松访问元素。
它们是做什么用的?
想象一下有一排剧院椅。每把椅子都分配了一个位置(从左到右),因此每个观众都会从他将要坐的椅子上分配一个号码。这是一个数组。将问题扩展到整个剧院(椅子的行和列),您将拥有一个二维数组(矩阵)。
特性
链表是线性数据结构,就像数组一样。链表和数组的主要区别在于链表的元素不存储在连续的内存位置。它由节点组成——实体存储当前元素的值和下一个元素的地址引用。这样,元素通过指针链接。
它们是做什么用的?
链表的一个相关应用是浏览器的上一页和下一页的实现。双链表是存储用户搜索显示的页面的完美数据结构。
特性
堆栈是一种抽象数据类型,它形式化了受限访问集合的概念。该限制遵循 LIFO(后进先出)规则。因此,添加到堆栈中的最后一个元素是您从中删除的第一个元素。
堆栈可以使用数组或链表来实现。
它们是做什么用的?
现实生活中最常见的例子是在食堂中将盘子叠放在一起。位于顶部的板首先被移除。放置在最底部的盘子是在堆栈中保留时间最长的盘子。
堆栈最有用的一种情况是您需要获取给定元素的相反顺序。只需将它们全部推入堆栈,然后d出它们。
另一个有趣的应用是有效括号问题。给定一串括号,您可以使用堆栈检查它们是否匹配。
特性
队列是受限访问集合中的另一种数据类型,就像前面讨论的堆栈一样。主要区别在于队列是按照FIFO(先进先出)模型组织的:队列中第一个插入的元素是第一个被移除的元素。队列可以使用固定长度的数组、循环数组或链表来实现。
它们是做什么用的?
这种抽象数据类型 (ADT) 的最佳用途当然是模拟现实生活中的队列。例如,在呼叫中心应用程序中,队列用于保存等待从顾问那里获得帮助的客户——这些客户应该按照他们呼叫的顺序获得帮助。
一种特殊且非常重要的队列类型是优先级队列。元素根据与它们关联的“优先级”被引入队列:具有最高优先级的元素首先被引入队列。这个 ADT 在许多图算法(Dijkstra 算法、BFS、Prim 算法、霍夫曼编码 )中是必不可少的。它是使用堆实现的。
另一种特殊类型的队列是deque 队列(双关语它的发音是“deck”)。可以从队列的两端插入/删除元素。
特性
Maps (dictionaries)是包含键集合和值集合的抽象数据类型。每个键都有一个与之关联的值。
哈希表是一种特殊类型的映射。它使用散列函数生成一个散列码,放入一个桶或槽数组:键被散列,结果散列指示值的存储位置。
最常见的散列函数(在众多散列函数中)是模常数函数。例如,如果常量是 6,则键 x 的值是x%6。
理想情况下,散列函数会将每个键分配给一个唯一的桶,但他们的大多数设计都采用了不完善的函数,这可能会导致具有相同生成值的键之间发生冲突。这种碰撞总是以某种方式适应的。
它们是做什么用的?
Maps 最著名的应用是语言词典。语言中的每个词都为其指定了定义。它是使用有序映射实现的(其键按字母顺序排列)。
通讯录也是一张Map。每个名字都有一个分配给它的电话号码。
另一个有用的应用是值的标准化。假设我们要为一天中的每一分钟(24 小时 = 1440 分钟)分配一个从 0 到 1439 的索引。哈希函数将为h(x) = x.小时*60+x.分钟。
特性
术语:
因为maps 是使用自平衡红黑树实现的(文章后面会解释),所以所有 *** 作都在 O(log n) 内完成;所有哈希表 *** 作都是常量。
图是表示一对两个集合的非线性数据结构:G={V, E},其中 V 是顶点(节点)的集合,而 E 是边(箭头)的集合。节点是由边互连的值 - 描述两个节点之间的依赖关系(有时与成本/距离相关联)的线。
图有两种主要类型:有向图和无向图。在无向图中,边(x, y)在两个方向上都可用:(x, y)和(y, x)。在有向图中,边(x, y)称为箭头,方向由其名称中顶点的顺序给出:箭头(x, y)与箭头(y, x) 不同。
它们是做什么用的?
特性
图论是一个广阔的领域,但我们将重点介绍一些最知名的概念:
一棵树是一个无向图,在连通性方面最小(如果我们消除一条边,图将不再连接)和在无环方面最大(如果我们添加一条边,图将不再是无环的)。所以任何无环连通无向图都是一棵树,但为了简单起见,我们将有根树称为树。
根是一个固定节点,它确定树中边的方向,所以这就是一切“开始”的地方。叶子是树的终端节点——这就是一切“结束”的地方。
一个顶点的孩子是它下面的事件顶点。一个顶点可以有多个子节点。一个顶点的父节点是它上面的事件顶点——它是唯一的。
它们是做什么用的?
我们在任何需要描绘层次结构的时候都使用树。我们自己的家谱树就是一个完美的例子。你最古老的祖先是树的根。最年轻的一代代表叶子的集合。
树也可以代表你工作的公司中的上下级关系。这样您就可以找出谁是您的上级以及您应该管理谁。
特性
二叉树是一种特殊类型的树:每个顶点最多可以有两个子节点。在严格二叉树中,除了叶子之外,每个节点都有两个孩子。具有 n 层的完整二叉树具有所有2ⁿ-1 个可能的节点。
二叉搜索树是一棵二叉树,其中节点的值属于一个完全有序的集合——任何任意选择的节点的值都大于左子树中的所有值,而小于右子树中的所有值。
它们是做什么用的?
BT 的一项重要应用是逻辑表达式的表示和评估。每个表达式都可以分解为变量/常量和运算符。这种表达式书写方法称为逆波兰表示法 (RPN)。这样,它们就可以形成一个二叉树,其中内部节点是运算符,叶子是变量/常量——它被称为抽象语法树(AST)。
BST 经常使用,因为它们可以快速搜索键属性。AVL 树、红黑树、有序集和映射是使用 BST 实现的。
特性
BST 有三种类型的 DFS 遍历:
所有这些类型的树都是自平衡二叉搜索树。不同之处在于它们以对数时间平衡高度的方式。
AVL 树在每次插入/删除后都是自平衡的,因为节点的左子树和右子树的高度之间的模块差异最大为 1。 AVL 以其发明者的名字命名:Adelson-Velsky 和 Landis。
在红黑树中,每个节点存储一个额外的代表颜色的位,用于确保每次插入/删除 *** 作后的平衡。
在 Splay 树中,最近访问的节点可以快速再次访问,因此任何 *** 作的摊销时间复杂度仍然是 O(log n)。
它们是做什么用的?
AVL 似乎是数据库理论中最好的数据结构。
RBT(红黑树) 用于组织可比较的数据片段,例如文本片段或数字。在 Java 8 版本中,HashMap 是使用 RBT 实现的。计算几何和函数式编程中的数据结构也是用 RBT 构建的。
在 Windows NT 中(在虚拟内存、网络和文件系统代码中),Splay 树用于缓存、内存分配器、垃圾收集器、数据压缩、绳索(替换用于长文本字符串的字符串)。
特性
最小堆是一棵二叉树,其中每个节点的值都大于或等于其父节点的值:val[par[x]]
目前是最常用的四类数据库是:关系型数据库,是按链表或是顺序结果进行存储的.
树型数据库,是按树型结构进行存储的.
网状数据库,是按图结构进行存储的
对象数据库,是按顺序结构或是链表结构下的块方式进行存储的!每一个对象存储在一个单独的块单元中.
目前最常用的是关系型与对象数据库.
删除学生表中所有男生信息.
查询学生表中所有总分大于85的学生的姓名与总分.
问题1:数据模型按不同的应用层次分成三种类型:分别是概念数据模型、逻辑数据模型、物理数据模型。
1、概念数据模型(Conceptual Data Model):简称概念模型,是面向数据库用户的实现世界的模型,主要用来描述世界的概念化结构,它使数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系等,与具体的数据管理系统(Database Management System,简称DBMS)无关。概念数据模型必须换成逻辑数据模型,才能在DBMS中实现。
2、逻辑数据模型(Logical Data Model):简称数据模型,这是用户从数据库所看到的模型,是具体的DBMS所支持的数据模型,如网状数据模型(Network Data Model)、层次数据模型(Hierarchical Data Model)等等。此模型既要面向用户,又要面向系统,主要用于数据库管理系统(DBMS)的实现。
3、物理数据模型(Physical Data Model):简称物理模型,是面向计算机物理表示的模型,描述了数据在储存介质上的组织结构,它不但与具体的DBMS有关,而且还与 *** 作系统和硬件有关。每一种逻辑数据模型在实现时都有起对应的物理数据模型。DBMS为了保证其独立性与可移植性,大部分物理数据模型的实现工作又系统自动完成,而设计者只设计索引、聚集等特殊结构。
在概念数据模型中最常用的是E-R模型、扩充的E-R模型、面向对象模型及谓词模型。在逻辑数据类型中最常用的是层次模型、网状模型、关系模型。
数据库领域采用的数据模型有层次模型、网状模型和关系模型,其中应用最广泛的是关系模型。
层次模型:它的特点是将数据组织成一对多关系的结构。
层次结构采用关键字来访问其中每一层次的每一部分。
优点:
存取方便且速度快
结构清晰,容易理解
数据修改和数据库扩展容易实现
检索关键属性十分方便
缺陷:
结构呆板,缺乏灵活性
同一属性数据要存储多次,数据冗余大(如公共边)
不适合于拓扑空间数据的组织 网状模型用连接指令或指针来确定数据间的显式连接关系,是具有多对多类型的数据组织方式 优点:
能明确而方便地表示数据间的复杂关系
数据冗余小
缺陷:
网状结构的复杂,增加了用户查询和定位的困难。
需要存储数据间联系的指针,使得数据量增大
数据的修改不方便(指针必须修改)
关系数据库模型是以记录组或数据表的形式组织数据,以便于利用各种地理实体与属性之间的关系进行存储和变换,不分层也无指针,是建立空间数据和属性数据之间关系的一种非常有效的数据组织方法
优点:
结构特别灵活,满足所有布尔逻辑运算和数学运算规则形成的查询要求
能搜索、组合和比较不同类型的数据
增加和删除数据非常方便
缺陷:
数据库大时,查找满足特定关系的数据费时
对空间关系无法满足
问题2:
删除“学生”表性别为“男”的记录。
查询学生表(列姓名,总分),条件是总分大于85分的记录
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)