Java多线程的优先级

Java多线程的优先级,第1张

优先级线程优先级(Priority)告诉调试程序该线程的重要程度有多大 如果有大量线程都被堵塞 都在等候运行 调试程序会首先运行具有最高优先级的那个线程 然而 这并不表示优先级较低的线程不会运行(换言之 不会因为存在优先级而导致死锁) 若线程的优先级较低 只不过表示它被准许运行的机会小一些而已 可用getPriority()方法读取一个线程的优先级 并用setPriority()改变它 在下面这个程序片中 大家会发现计数器的计数速度慢了下来 因为它们关联的线程分配了较低的优先级 //: Counter java// Adjusting the priorities of threadsimport java awt *import java awt event *import java applet *class Ticker extends Thread { private Button b = new Button( Toggle ) incPriority = new Button( up ) decPriority = new Button( down )private TextField t = new TextField( ) pr = new TextField( )// Display priority private int count = private boolean runFlag = truepublic Ticker (Container c) { b addActionListener(new ToggleL())incPriority addActionListener(new UpL())decPriority addActionListener(new DownL())Panel p = new Panel()p add(t)p add(pr)p add(b)p add(incPriority)p add(decPriority)c add(p)} class ToggleL implements ActionListener { public void actionPerformed(ActionEvent e) { runFlag = !runFlag} } class UpL implements ActionListener { public void actionPerformed(ActionEvent e) { int newPriority = getPriority() + if(newPriority >Thread MAX_PRIORITY) newPriority = Thread MAX_PRIORITYsetPriority(newPriority)} } class DownL implements ActionListener { public void actionPerformed(ActionEvent e) { int newPriority = getPriority() if(newPriority <Thread MIN_PRIORITY) newPriority = Thread MIN_PRIORITYsetPriority(newPriority)} } public void run() { while (true) { if(runFlag) { t setText(Integer toString(count++))pr setText( Integer toString(getPriority()))} yield()} }}public class Counter extends Applet { private Button start = new Button( Start ) upMax = new Button( Inc Max Priority ) downMax = new Button( Dec Max Priority )private boolean started = falseprivate static final int SIZE = private Ticker [] s = new Ticker [SIZE]private TextField mp = new TextField( )public void init() { for(int i = i <s.lengthi++) s[i] = new Ticker2(this)add(new Label("MAX_PRIORITY = " + Thread.MAX_PRIORITY))add(new Label("MIN_PRIORITY = " + Thread.MIN_PRIORITY))add(new Label("Group Max Priority = "))add(mp) add(start)add(upMax)add(downMax)start.addActionListener(new StartL())upMax.addActionListener(new UpMaxL())downMax.addActionListener(new DownMaxL())showMaxPriority()// Recursively display parent thread groups: ThreadGroup parent = s[0].getThreadGroup().getParent()while(parent != null) { add(new Label( "Parent threadgroup max priority = " + parent.getMaxPriority()))parent = parent.getParent()} } public void showMaxPriority() { mp.setText(Integer.toString( s[0].getThreadGroup().getMaxPriority()))} class StartL implements ActionListener { public void actionPerformed(ActionEvent e) { if(!started) { started = truefor(int i = 0i <s.lengthi++) s[i].start()} } } class UpMaxL implements ActionListener { public void actionPerformed(ActionEvent e) { int maxp = s[0].getThreadGroup().getMaxPriority()if(++maxp >Thread.MAX_PRIORITY) maxp = Thread.MAX_PRIORITYs[0].getThreadGroup().setMaxPriority(maxp)showMaxPriority()} } class DownMaxL implements ActionListener { public void actionPerformed(ActionEvent e) { int maxp = s[0].getThreadGroup().getMaxPriority()if(--maxp <Thread.MIN_PRIORITY) maxp = Thread.MIN_PRIORITYs[0].getThreadGroup().setMaxPriority(maxp)showMaxPriority()} } public static void main(String[] args) { Counter5 applet = new Counter5()Frame aFrame = new Frame("Counter5")aFrame.addWindowListener( new WindowAdapter() { public void windowClosing(WindowEvent e) { System.exit(0)} })aFrame.add(applet, BorderLayout.CENTER)aFrame.setSize(300, 600)applet.init()applet.start()aFrame.setVisible(true)}} ///:~Ticker采用本章前面构造好的形式,但有一个额外的TextField(文本字段),用于显示线程的优先级;以及两个额外的按钮,用于人为提高及降低优先级。WInGWit.也要注意yield()的用法,它将控制权自动返回给调试程序(机制)。若不进行这样的处理,多线程机制仍会工作,但我们会发现它的运行速度慢了下来(试试删去对yield()的调用)。亦可调用sleep(),但假若那样做,计数频率就会改由sleep()的持续时间控制,而不是优先级。Counter5中的init()创建了由10个Ticker2构成的一个数组;它们的按钮以及输入字段(文本字段)由Ticker2构建器置入窗体。Counter5增加了新的按钮,用于启动一切,以及用于提高和降低线程组的最大优先级。除此以外,还有一些标签用于显示一个线程可以采用的最大及最小优先级;以及一个特殊的文本字段,用于显示线程组的最大优先级(在下一节里,我们将全面讨论线程组的问题)。最后,父线程组的优先级也作为标签显示出来。按下“up”(上)或“down”(下)按钮的时候,会先取得Ticker2当前的优先级,然后相应地提高或者降低。运行该程序时,我们可注意到几件事情。首先,线程组的默认优先级是5。即使在启动线程之前(或者在创建线程之前,这要求对代码进行适当的修改)将最大优先级降到5以下,每个线程都会有一个5的默认优先级。最简单的测试是获取一个计数器,将它的优先级降低至1,此时应观察到它的计数频率显著放慢。现在试着再次提高优先级,可以升高回线程组的优先级,但不能再高了。现在将线程组的优先级降低两次。线程的优先级不会改变,但假若试图提高或者降低它,就会发现这个优先级自动变成线程组的优先级。此外,新线程仍然具有一个默认优先级,即使它比组的优先级还要高(换句话说,不要指望利用组优先级来防止新线程拥有比现有的更高的优先级)。最后,试着提高组的最大优先级。可以发现,这样做是没有效果的。我们只能减少线程组的最大优先级,而不能增大它。 lishixinzhi/Article/program/Java/gj/201311/27587

在Java语言产生前 传统的程序设计语言的程序同一时刻只能单任务 *** 作 效率非常低 例如程序往往在接收数据输入时发生阻塞 只有等到程序获得数据后才能继续运行 随着Internet的迅猛发展 这种状况越来越不能让人们忍受 如果网络接收数据阻塞 后台程序就处于等待状态而不继续任何 *** 作 而这种阻塞是经常会碰到的 此时CPU资源被白白的闲置起来 如果在后台程序中能够同时处理多个任务 该多好啊!应Internet技术而生的Java语言解决了这个问题 多线程程序是Java语言的一个很重要的特点 在一个Java程序中 我们可以同时并行运行多个相对独立的线程 例如 我们如果创建一个线程来进行数据输入输出 而创建另一个线程在后台进行其它的数据处理 如果输入输出线程在接收数据时阻塞 而处理数据的线程仍然在运行 多线程程序设计大大提高了程序执行效率和处理能力

线程的创建

我们知道Java是面向对象的程序语言 用Java进行程序设计就是设计和使用类 Java为我们提供了线程类Thread来创建线程 创建线程与创建普通的类的对象的 *** 作是一样的 而线程就是Thread类或其子类的实例对象 下面是一个创建启动一个线程的语句

Thread thread =new Thread()file://声明一个对象实例 即创建一个线程

Thread run()file://用Thread类中的run()方法启动线程

从这个例子 我们可以通过Thread()构造方法创建一个线程 并启动该线程 事实上 启动线程 也就是启动线程的run()方法 而Thread类中的run()方法没有任何 *** 作语句 所以这个线程没有任何 *** 作 要使线程实现预定功能 必须定义自己的run()方法 Java中通常有两种方式定义run()方法

通过定义一个Thread类的子类 在该子类中重写run()方法 Thread子类的实例对象就是一个线程 显然 该线程有我们自己设计的线程体run()方法 启动线程就启动了子类中重写的run()方法

通过Runnable接口 在该接口中定义run()方法的接口 所谓接口跟类非常类似 主要用来实现特殊功能 如复杂关系的多重继承功能 在此 我们定义一个实现Runnable() 接口的类 在该类中定义自己的run()方法 然后以该类的实例对象为参数调用Thread类的构造方法来创建一个线程

线程被实际创建后处于待命状态 激活(启动)线程就是启动线程的run()方法 这是通过调用线程的start()方法来实现的

下面一个例子实践了如何通过上述两种方法创建线程并启动它们

// 通过Thread类的子类创建的线程   class thread extends Thread { file://自定义线程的run()方法   public void run() {   System out println( Thread is running… )}   }   file://通过Runnable接口创建的另外一个线程 class thread implements Runnable   { file://自定义线程的run()方法 public void run() {   System out println( Thread is running… )}   }   file://程序的主类   class Multi_Thread file://声明主类 {   plubic static void mail(String args[]) file://声明主方法 {   thread threadone=new thread ()file://用Thread类的子类创建线程   Thread threado=new Thread(new thread ())file://用Runnable接口类的对象创建线程   threadone start()threado start()file://strat()方法启动线程 }   }

运行该程序就可以看出 线程threadone和threado交替占用CPU 处于并行运行状态 可以看出 启动线程的run()方法是通过调用线程的start()方法来实现的(见上例中主类) 调用start()方法启动线程的run()方法不同于一般的调用方法 调用一般方法时 必须等到一般方法执行完毕才能够返回start()方法 而启动线程的run()方法后 start()告诉系统该线程准备就绪可以启动run()方法后 就返回start()方法执行调用start()方法语句下面的语句 这时run()方法可能还在运行 这样 线程的启动和运行并行进行 实现了多任务 *** 作

线程的优先级

对于多线程程序 每个线程的重要程度是不尽相同 如多个线程在等待获得CPU时间时 往往我们需要优先级高的线程优先抢占到CPU时间得以执行 又如多个线程交替执行时 优先级决定了级别高的线程得到CPU的次数多一些且时间多长一些 这样 高优先级的线程处理的任务效率就高一些

Java中线程的优先级从低到高以整数 ~ 表示 共分为 级 设置优先级是通过调用线程对象的setPriority()方法 如上例中 设置优先级的语句为

thread threadone=new thread ()file://用Thread类的子类创建线程

Thread threado=new Thread(new thread ())file://用Runnable接口类的对象创建线程

threadone setPriority( )file://设置threadone的优先级

threado setPriority( )file://设置threado的优先级

threadone start()threado start()file://strat()方法启动线程

这样 线程threadone将会优先于线程threado执行 并将占有更多的CPU时间 该例中 优先级设置放在线程启动前 也可以在启动后进行设置 以满足不同的优先级需求

线程的(同步)控制

一个Java程序的多线程之间可以共享数据 当线程以异步方式访问共享数据时 有时候是不安全的或者不和逻辑的 比如 同一时刻一个线程在读取数据 另外一个线程在处理数据 当处理数据的线程没有等到读取数据的线程读取完毕就去处理数据 必然得到错误的处理结果 这和我们前面提到的读取数据和处理数据并行多任务并不矛盾 这儿指的是处理数据的线程不能处理当前还没有读取结束的数据 但是可以处理其它的数据

如果我们采用多线程同步控制机制 等到第一个线程读取完数据 第二个线程才能处理该数据 就会避免错误 可见 线程同步是多线程编程的一个相当重要的技术

在讲线程的同步控制前我们需要交代如下概念

用Java关键字synchonized同步对共享数据 *** 作的方法

在一个对象中 用synchonized声明的方法为同步方法 Java中有一个同步模型 监视器 负责管理线程对对象中的同步方法的访问 它的原理是 赋予该对象唯一一把 钥匙 当多个线程进入对象 只有取得该对象钥匙的线程才可以访问同步方法 其它线程在该对象中等待 直到该线程用wait()方法放弃这把钥匙 其它等待的线程抢占该钥匙 抢占到钥匙的线程后才可得以执行 而没有取得钥匙的线程仍被阻塞在该对象中等待

file://声明同步的一种方式 将方法声明同步

class store  {public synchonized void store_in(){… }public synchonized void store_out(){  … }}

  利用wait() notify()及notifyAll()方法发送消息实现线程间的相互联系

Java程序中多个线程通过消息来实现互动联系的 这几种方法实现了线程间的消息发送 例如定义一个对象的synchonized 方法 同一时刻只能够有一个线程访问该对象中的同步方法 其它线程被阻塞 通常可以用notify()或notifyAll()方法唤醒其它一个或所有线程 而使用wait()方法来使该线程处于阻塞状态 等待其它的线程用notify()唤醒

一个实际的例子就是生产和销售 生产单元将产品生产出来放在仓库中 销售单元则从仓库中提走产品 在这个过程中 销售单元必须在仓库中有产品时才能提货 如果仓库中没有产品 则销售单元必须等待

程序中 假如我们定义一个仓库类store 该类的实例对象就相当于仓库 在store类中定义两个成员方法 store_in() 用来模拟产品制造者往仓库中添加产品 strore_out()方法则用来模拟销售者从仓库中取走产品 然后定义两个线程类 customer类 其中的run()方法通过调用仓库类中的store_out()从仓库中取走产品 模拟销售者 另外一个线程类producer中的run()方法通过调用仓库类中的store_in()方法向仓库添加产品 模拟产品制造者 在主类中创建并启动线程 实现向仓库中添加产品或取走产品

如果仓库类中的store_in() 和store_out()方法不声明同步 这就是个一般的多线程 我们知道 一个程序中的多线程是交替执行的 运行也是无序的 这样 就可能存在这样的问题

仓库中没有产品了 销售者还在不断光顾 而且还不停的在 取 产品 这在现实中是不可思义的 在程序中就表现为负值 如果将仓库类中的stroe_in()和store_out()方法声明同步 如上例所示 就控制了同一时刻只能有一个线程访问仓库对象中的同步方法 即一个生产类线程访问被声明为同步的store_in()方法时 其它线程将不能够访问对象中的store_out()同步方法 当然也不能访问store_in()方法 必须等到该线程调用wait()方法放弃钥匙 其它线程才有机会访问同步方法

lishixinzhi/Article/program/Java/gj/201311/27301


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/tougao/11061147.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-13
下一篇 2023-05-13

发表评论

登录后才能评论

评论列表(0条)

保存