#include <string>
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std
using namespace cv
int _tmain(int argc, _TCHAR* argv[])
{
//创建一个用1+3j填充的 7 x 7 复矩阵-----1
Mat M(7, 7, CV_32FC2, Scalar(1,3))
//现在将 M转换为100 x 60的CV_8UC(15)的矩阵,旧内容将会被释放
M.create(100, 60, CV_8UC(15))//不能为矩阵设置初值
//第 5行,乘以 3,加到第 3 行,
M.row(3) = M.row(3) + M.row (5) * 3
//现在将第7列复制到第1列, M.col(1) = M.col(7)//这个不能实现,对列 *** 作时要新建一个Mat
Mat M1 = M.col(1)
M.col(7).copyTo(M1)
//创建一种新的 320 x 240 图像-----2
Mat img(Size(320,240), CV_8UC3, Scalar::all(255))
string strWindowName = "ShowImage"
namedWindow(strWindowName, WINDOW_AUTOSIZE)
imshow(strWindowName, img)
waitKey(0)
//选择ROI(region of interest)
Mat roi(img, Rect(10, 10, 100, 100))
//填充 (0,255,0) 的ROI (这是RGB 空间中的绿色),320 x 240 原始图像将被修改
roi = Scalar(0, 255, 0)
imshow(strWindowName, img)
waitKey(0)
//获取数组中的子块-----3
Mat A = Mat::eye(10, 10, CV_32S)
//提取 A 的1 (含)到 3 (不包含)列
Mat B = A(Range::all(), Range(1, 3))
//提取 B 的5 (含)到 9 (不包含)行,即 C ~ A(Range(5,9),Range (1,3))
Mat C = B(Range(5, 9), Range::all())
Size size
Point ofs
C.locateROI(size, ofs)//使用locateROI() 计算子数组在主容器数组中的相对的位置
cout<<size.width<<" "<<size.height<<" "<<ofs.x<<" "<<ofs.y<<endl
//快速初始化小矩阵-----4
double m[3][3] = {{1, 2, 3}, {1, 2, 5}, {3, 4, 6}}
Mat M2 = Mat(3, 3, CV_64F, m)//.inv()
Mat E = Mat::eye(4, 4, CV_64F)
cout<<"E = "<<endl<<" "<<E<<endl
Mat O = Mat::ones(2, 2, CV_32F)
cout<<"O = "<<endl<<" "<<O<<endl
Mat Z = Mat::zeros(3,3, CV_8UC1)
cout<<"Z = "<<endl<<" "<<Z<<endl
//IplImage、Mat、CvMat互转-----5
IplImage *img1 = cvLoadImage("aa.jpg", 2 | 4)
Mat mtx(img1)//IplImage *->Mat,新的Mat类型与原来的IplImage类型共享图像数据,转换只是创建一个Mat矩阵头// or : Mat mtx = img1
CvMat oldmat = mtx//Mat->CvMat //只是创建矩阵头,而没有复制数据,oldmat不用手动释放
CV_Assert((oldmat.cols == img1->width) &&(oldmat.rows == img1->height) &&(oldmat.data.ptr == (uchar *)img1->imageData) &&(oldmat.step == img1->widthStep))
imshow(strWindowName, mtx)
waitKey(0)
cvNamedWindow(strWindowName.c_str(), 0)
cvShowImage(strWindowName.c_str(), &oldmat)
cvWaitKey(0)
IplImage img2 = mtx//Mat->IplImage //只是创建图像头,而没有复制数据,img2不用手动释放
cvShowImage(strWindowName.c_str(), &img2)
cvWaitKey(0)
Mat mat3(&oldmat)//CvMat->Mat
imshow(strWindowName, mat3)
waitKey(0)
cvDestroyWindow(strWindowName.c_str())
cvReleaseImage(&img1)
//创建 3 x 3 双精度恒等矩阵-----6
Mat M3 = (Mat_ <double>(3,3) <<1,0,0, 0,1,0, 0,0,1)
//访问数组元素-----7
M2.at<double>(0, 0) += 10.f
double sum = 0//计算元素和,方法一
for (int i=0i<M2.rowsi++)
{
const double *Mi = M2.ptr<double>(i)
for (int j=0j<M2.colsj++)
{
sum += std::max(Mi[j], 0.)
}
}
cout<<sum<<endl
sum = 0//计算元素和,方法二
int cols =M2.cols, rows = M2.rows
if (M2.isContinuous())
{
cols *= rows
rows = 1
}
for (int i=0i<rowsi++)
{
const double *Mi = M2.ptr <double>(i)
for (int j=0j<colsj++)
{
sum += std::max(Mi[j], 0.)
}
}
cout<<sum<<endl
sum = 0//计算元素和,方法三
MatConstIterator_<double> it = M2.begin<double>(), it_end = M2.end<double>()
for(it != it_end++it)
{
sum += std::max(*it, 0.)
}
cout<<sum<<endl
return 0
}
这个是你自己定的呀 要么从其他地方传过来 要么自己从图像上获得从图像上获得可以采用鼠标响应函数 具体参见http://blog.csdn.net/quarryman/article/details/8450387
不然就只有试着估计了 多调几次也能出来
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)