[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t)%归一化数据,方便后面的预测
net.trainParam. show = 100 %这里的show是显示步数,每100步显示一次
net.trainParam.goal=0.0001%目标误差,训练得到的数据和原始输入
net.trainParam.lr = 0.01 %lr是学习动量,一般越小越好
y1=sim(net,pn) %sim用来预测的
xlswrite('testdata6',tnew1) ?这里的testdata6是excel表格的名称
trainbr算法用的较少。一般在divide up samples 前, 把normInput, 和 normTarget 留下一部分作为validation。阅读下trainbr函数的帮助:
net.trainParam.max_fail 5 Maximum validation failures
If VV is not [], it must be a
structure of validation vectors,
VV.PD - Validation delayed inputs.
VV.Tl - Validation layer targets.
VV.Ai - Validation initial input conditions.
VV.Q - Validation batch size.
VV.TS - Validation time steps.
which is normally used to stop training early if the
network performance on the validation vectors fails to improve or remains the
same for max_fail epochs in a row.
If TV is not [], it must be a structure of
validation vectors,
TV.PD - Validation delayed inputs.
TV.Tl - Validation layer targets.
TV.Ai - Validation initial input conditions.
TV.Q - Validation batch size.
TV.TS - Validation time steps.
which is used to test the generalization capability of the trained network.
说明还是有划分样本的,仔细研究下吧。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)