本文中将给出一些编译好的依赖库,如果你也是用的Windows 7 64位+VS2013,可以直接使用。
2.准备依赖库
在Windows下配置caffe,一个很主要的问题就是依赖库的编译。不像在Ubuntu下那么方便,在Windows下,依赖库都需要使用vs2013进行编译才能使用。下面我将介绍caffe需要的依赖库(如果你也是win7 64位+VS2013,可以直接使用我提供的依赖库)。
2.1 boost
boost可以下载源码进行编译,也可以直接下载安装文件。我使用的是后者,方便、快捷。
我使用的是:boost_1.56_0-msvc-12.0-64.exe
注意下载适合你的配置环境的boost版本即可。
下载完毕,双击运行安装文件即可。
2.2 Glog+Gflag+Protobuf+LevelDB+HDF5+LMDB+Openblas
这一部分的很多都是谷歌的开源库,不容易下载(你懂的)。所以我使用的是Neil Z. SHAO‘s Blog
提供的编译好的。
下载完,解压得到3rdparty文件夹。在下一段将会用到。
3.建立caffe工程
准备好了caffe需要的依赖库和环境之后,下面就可以建立caffe的vs项目,进行编译了。
3.1 下载caffe源码
可以从caffe的github主页下载源码。
下载地址:Caffe’s GitHub
解压文件,假设caffe源码所在目录为CAFFE_ROOT。
3.2 准备项目需要的依赖库和系统环境变量
经过上一阶段的准备,caffe项目所需的依赖库都已经准备好。
1.首先设置系统环境变量(以我的为例):
CUDA_PATH_V6_5 安装好cuda6.5之后,会自动添加环境变量CUDA_PATH_V6_5
OPENCV_2_49 D:/Tools/opencv2.49/build/
BOOST_1_56 D:/Tools/boost_1_56_0
2.将3rdparty文件夹放到CAFFE_ROOT
3.3 用vs建立caffe项目
1.用VS2013在CAFFE_ROOT下建立 win32 console application,选择空项目。
将项目的平台由32位改为64位
只要电脑配置够好,。推荐用64位7系统。因为ps cs4有64位版本。完全兼容7.最好4G以上内存前提下。。。。 要开启GPU加速,首先你的显卡得支持这个功能。最好方法是打开cs4。 然后crtl+K,里面有首选项。可以看到有个GPU加速开启。如果你显卡不支持,他会提示你不能开启。 多一句嘴。如果用cs4 ,建议用nvidiv的显卡。最好9500GT以上。因为新系统配cs4。都对显卡要求提高了。因为nvidiv跟adebo公司合作来测试cs4,所以推荐他家显卡,。支持要好很多。2.安装Visual Studio 2013;3.如果与需要使用NVIDIA显卡的请安装Cuda和CuDNN,不需要可以不装;
4.将.\windows\CommonSettings.props.example 复制一份并修改为 .\windows\CommonSettings.props,然后打开做如下修改:
1)如果不使用GPU,不安装CUDA和CuDNN,将CpuOnlyBuild 改为 true ,并且 UseCuDNN 改为 false;
2)安装CuDNN的情况下,将CuDNND路径复制到CuDnnPath;
3)选择支持Python或者MATLAB接口,当然也可以两个都支持,设置PythonSupport或者MatlabSupport为true,同时将Python或者MATLAB路径分别粘过来PythonDir和MatlabDir。
第二步,编译
打开.\windows\Caffe.sln,编译Caffe/convert_imageset、caffe、libcaffe、convert_mnist_data等,可以根据提示和需要进行,生成的caffe.exe为训练与测试的主程序,convert_imageset为将训练和测试数据生成LMDB使用的程序。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)