首先确认你的电脑是否安装了nvidia显卡,目前CUDA只支持Nvida的显卡,不支持AMD/ATI的显卡(AMD对OpenCL支持的很好)。在设备管理器中,可以查看显卡信息。如下图所示,含有NVIDIA的显卡,就可安装。
在英伟达的官网上下载cuda工具包,注意是windows系统的,而且需要看清楚是笔记本还是台式机的安装包,下载笔记本的安装套件,名字为cuda_5.0.35_winvista_win7_win8_notebook_32-3,(cuda5.5类似)双击打开安装即可,,按照提示安装,在这过程中,它也会更新nvidia的显卡驱动。
CUDA工具包安装完成后,我们还需要确认,CUDA是否已经正确安装,我们可以先检查nvcc编译器是否正确安装,在命令提示符窗口中输入:nvcc -V,回车查看是否有版本信息。若出现版本信息,则证明nvcc安装成功,
更一般的,我们会在命令行中运行在C:\ProgramData\NVIDIA Corporation\CUDA Samples\v5.0\bin\win32\Release中deviceQuery程序,若能检测到cuda device则证明程序已经正确安装
1、首先确认你的电脑是否安装了nvidia显卡,目前CUDA只支持Nvida的显卡,不支持AMD/ATI的显卡(AMD对OpenCL支持的很好)。在设备管理器中,可以查看显卡信息。如下图所示,含有NVIDIA的显卡,就可安装。
2、在官网上下载cuda工具包,注意是windows系统的,而且需要看清楚是笔记本还是台式机的安装包,下载笔记本的安装套件,名字为cuda_5.0.35_winvista_win7_win8_notebook_32-3,(cuda5.5类似)双击打开安装即可,,按照提示安装,在这过程中,它也会更新nvidia的显卡驱动。
3、CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。
4、开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++和FORTRAN。
5、计算行业正在从只使用CPU的"中央处理"向CPU与GPU并用的"协同处理"发展。为打造这一全新的计算典范,NVIDIA™(英伟达™)发明了CUDA(Compute Unified Device Architecture,统一计算设备架构)这一编程模型,是想在应用程序中充分利用CPU和GPU各自的优点。
下载cuDNN套件,然后进行解压,将得到的include、bin、lib中的文件分别复制到CUDA安装路径下对应的include、bin、lib文件中,并将C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\binC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64这两个路径加入环境变量中即可。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)