大数据常用同步工具

大数据常用同步工具,第1张

一、离线数据同步

DataX

阿里的Datax是比较优秀的产品,基于python,提供各种数据村塾的读写插件,多线程执行,使用起来也很简单数锋皮, *** 作简单通常只需要两步;

创建作业的配置文件(json格式配置reader,writer);

启动执行配置作业。

非常适合离线数据,增量数据可以使用一些编码的方式实现,

缺点:仅仅针对insert数据比较有效,update数据就不适合。缺乏对增量更新的内置支持,因为DataX的灵活架构,可以通过shell脚本等方式方便实现增量同步。

参考资料:

github地址:https://github.com/alibaba/DataX

dataX3.0介绍:https://www.jianshu.com/p/65c440f9bce1

datax初体验:https://www.imooc.com/article/15640

文档:https://github.com/alibaba/DataX/blob/master/hdfswriter/doc/hdfswriter.md

Sqoop

Sqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

地址:http://sqoop.apache.org/

Sqoop导入:导入工具从RDBMS到HDFS导入单个表。表中的基蠢每一行被视为HDFS的记录。所有记录被存储在文本文件的文本数据或者在Avro和序列文件的二进制数据。

Sqoop导出:导出工具从HDFS导出一组文件到一个RDBMS。作为输入到Sqoop文件包含记录,这被称为在表中的行。那些被读取并解析成一组记录和分隔使用用户指定的分隔符。

Sqoop支持全量数据导入和增量数据导入(增量数据导入分两种,一是基于递增列的增量数据导入(Append方式)。二是基于时间列的增量数据导入(LastModified方式)),同时可以指定数据是否以并发形式导入。

Kettle

Kettle是一款国外开源的ETL工具,纯java编写,可以在Window、Linux、Unix上运行,数据抽取高效稳定。

Kettle的Spoon有丰富的Steps可以组装开发出满足多种复杂应用场景的数据集成作业,方便实现全量、增量数据同步。缺点是通过定时运行,实时性相对较差。

NiFi

Apache NiFi 是一个易于使用、功能强大而且可靠的数据拉取、数据处理和分发系统,用于自动化管理系统间的数据流。它支持高度可配置的指示图的数据路由、转换和系统中介逻辑,支持从多种数据源动态拉取数据。

NiFi基于Web方式工作,后台在服务器上进行调度。 用户可以为数据处理定义为一个流程,然后进行处理,后台具有数据处理引擎、任务调度等组件。

几个核心概念:

Nifi 的设计理念接近于基于流的编程 Flow Based Programming。

FlowFile:表示通过系统移动的每个对象,包含数据流的基本属性

FlowFile Processor(处理器):负责实际对数据流执行工作

Connection(连接线):负责不同处理器之间的连接,是数据的有界缓冲区

Flow Controller(流量控制器):管理进程使用的线程及其分配

Process Group(过程组):进程组是一组特定的进程及其连接,允许组合其他组件创建新组件

参考资料

Nifi简介及核心概念整理

官方网站:http://nifi.apache.org/index.html

二、实时数据同步

实时同步最灵活的还是用薯差kafka做中间转发,当数据发生变化时,记录变化到kafka,需要同步数据的程序订阅消息即可,需要研发编码支持。这里说个mysql数据库的同步组件,阿里的canal和otter

canal

https://github.com/alibaba/canal

数据抽取简单的来说,就是将一个表的数据提取到另一个表中。有很多的ETL工具可以帮助我们来进行数据的抽取和转换,ETL工具能进行一次性或者定时作业抽取数据,不过canal作为阿里巴巴提供的开源的数据抽取项目,能够做到实时抽取,原理就是伪装成mysql从节点,读取mysql的binlog,生成消息,客户端订阅这些数据变更消息,处理并存储。下面我们来一起搭建一下canal服务

早期,阿里巴巴B2B公司因为存在杭州和美国双机房部署,存在跨机房同步的业务需求。不过早期的数据库同步业务,主要是基于trigger的方式获取增量变更,不过从2010年开始,阿里系公司开始逐步的尝试基于数据库的日志解析,获取增量变更进行同步,由此衍生出了增量订阅&消费的业务,从此开启了一段新纪元。

ps. 目前内部版本已经支持mysql和oracle部分版本的日志解析,当前的canal开源版本支持5.7及以下的版本(阿里内部mysql 5.7.13, 5.6.10, mysql 5.5.18和5.1.40/48)

基于日志增量订阅&消费支持的业务:

数据库镜像

数据库实时备份

多级索引 (卖家和买家各自分库索引)

search build

业务cache刷新

价格变化等重要业务消息

otter

https://github.com/alibaba/otter

otter是在canal基础上又重新实现了可配置的消费者,使用otter的话,刚才说过的消费者就不需要写了,而otter提供了一个web界面,可以自定义同步任务及map表。非常适合mysql库之间的同步。

另外:otter已在阿里云推出商业化版本 数据传输服务DTS, 开通即用,免去部署维护的昂贵使用成本。DTS针对阿里云RDS、DRDS等产品进行了适配,解决了Binlog日志回收,主备切换、VPC网络切换等场景下的同步高可用问题。同时,针对RDS进行了针对性的性能优化。出于稳定性、性能及成本的考虑,强烈推荐阿里云用户使用DTS产品。

说一下大数据的四个典型的特征:

数据量大;

数据类型繁多,(结构化、非结构化文本、日志、视频、图片、地理位置等);

商业价值高,但需要在海量数据之上,通过数据分析与机器学习快速的挖掘出来;

处理时效性高,海量数据的处理需求不再局限在离线计算当中。

第一章:Hadoop

在大数据存储和计算中Hadoop可以算是开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

关于Hadoop,你至少需要搞清楚这些是什么:

自己学会如何搭建Hadoop,先让它跑起来。建议先使用安装包命令行安装,不要使用旦侍管理工具安装。现在都用Hadoop 2.0。

目录 *** 作命令;上传、下载文件命令;提交运行MapReduce示例程序;打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。知道Hadoop的系统日志在哪里。

以上完成之后,就应该去了解他们的原理了:

MapReduce:如何分而治模老吵之;HDFS:数据到底在哪里,究竟什么才是副本;

Yarn到底是什么,它能干什么;NameNode到底在干些什么;Resource Manager到底在干些什么;

如果有合适的学习网站,视频就去听课,如果没有或者比较喜欢书籍,也可以啃书。当然最好的方法是先去搜索出来这些是干什么的,大概有了概念之后,然后再去听视频。

第二章:更高效的WordCount

在这里,一定要学习SQL,它会对你的工作有很大的帮助。

就像是你写(或者抄)的WordCount一共有几行代码?但是你用SQL就非常简单了,例如:

SELECT word,COUNT(1) FROM wordcount GROUP BY word;

这便是SQL的魅力,编程需要几十行,甚至上百行代码,而SQL一行搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。

另外就是SQL On Hadoop之Hive于大数据而言一定要学习的。

什么是Hive?

官方解释如下:The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax。

为什么说Hive是数据仓库工具,而不是数据库工具呢?

有的朋友可能不知道数据仓库,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库中的数据有这两个特点:最全的历史数据(海量)、相对含睁稳定的;所谓相对稳定,指的是数据仓库不同于业务系统数据库,数据经常会被更新,数据一旦进入数据仓库,很少会被更新和删除,只会被大量查询。而Hive,也是具备这两个特点,因此,Hive适合做海量数据的数据仓库工具,而不是数据库工具。

了解了它的作用之后,就是安装配置Hive的环节,当可以正常进入Hive命令行是,就是安装配置成功了。

了解Hive是怎么工作的

学会Hive的基本命令:

创建、删除表;加载数据到表;下载Hive表的数据;

MapReduce的原理(还是那个经典的题目,一个10G大小的文件,给定1G大小的内存,如何使用Java程序统计出现次数最多的10个单词及次数);

HDS读写数据的流程;向HDFS中PUT数据;从HDFS中下载数据;

自己会写简单的MapReduce程序,运行出现问题,知道在哪里查看日志;

会写简单的Select、Where、group by等SQL语句;

Hive SQL转换成MapReduce的大致流程;

Hive中常见的语句:创建表、删除表、往表中加载数据、分区、将表中数据下载到本地;

从上面的学习,你已经了解到,HDFS是Hadoop提供的分布式存储框架,它可以用来存储海量数据,MapReduce是Hadoop提供的分布式计算框架,它可以用来统计和分析HDFS上的海量数据,而Hive则是SQL On Hadoop,Hive提供了SQL接口,开发人员只需要编写简单易上手的SQL语句,Hive负责把SQL翻译成MapReduce,提交运行。

此时,你的”大数据平台”是这样的:那么问题来了,海量数据如何到HDFS上呢?

第三章:数据采集

把各个数据源的数据采集到Hadoop上。

3.1 HDFS PUT命令

这个在前面你应该已经使用过了。put命令在实际环境中也比较常用,通常配合shell、python等脚本语言来使用。建议熟练掌握。

3.2 HDFS API

HDFS提供了写数据的API,自己用编程语言将数据写入HDFS,put命令本身也是使用API。

实际环境中一般自己较少编写程序使用API来写数据到HDFS,通常都是使用其他框架封装好的方法。比如:Hive中的INSERT语句,Spark中的saveAsTextfile等。建议了解原理,会写Demo。

3.3 Sqoop

Sqoop是一个主要用于Hadoop/Hive与传统关系型数据库,Oracle、MySQL、SQLServer等之间进行数据交换的开源框架。就像Hive把SQL翻译成MapReduce一样,Sqoop把你指定的参数翻译成MapReduce,提交到Hadoop运行,完成Hadoop与其他数据库之间的数据交换。

自己下载和配置Sqoop(建议先使用Sqoop1,Sqoop2比较复杂)。了解Sqoop常用的配置参数和方法。

使用Sqoop完成从MySQL同步数据到HDFS;使用Sqoop完成从MySQL同步数据到Hive表;如果后续选型确定使用Sqoop作为数据交换工具,那么建议熟练掌握,否则,了解和会用Demo即可。

3.4 Flume

Flume是一个分布式的海量日志采集和传输框架,因为“采集和传输框架”,所以它并不适合关系型数据库的数据采集和传输。Flume可以实时的从网络协议、消息系统、文件系统采集日志,并传输到HDFS上。

因此,如果你的业务有这些数据源的数据,并且需要实时的采集,那么就应该考虑使用Flume。

下载和配置Flume。使用Flume监控一个不断追加数据的文件,并将数据传输到HDFS;Flume的配置和使用较为复杂,如果你没有足够的兴趣和耐心,可以先跳过Flume。

3.5 阿里开源的DataX

现在DataX已经是3.0版本,支持很多数据源。

第四章:把Hadoop上的数据搞到别处去

Hive和MapReduce进行分析了。那么接下来的问题是,分析完的结果如何从Hadoop上同步到其他系统和应用中去呢?其实,此处的方法和第三章基本一致的。

HDFS GET命令:把HDFS上的文件GET到本地。需要熟练掌握。

HDFS API:同3.2.

Sqoop:同3.3.使用Sqoop完成将HDFS上的文件同步到MySQL;使用Sqoop完成将Hive表中的数据同步到MySQL。

如果你已经按照流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

知道如何把已有的数据采集到HDFS上,包括离线采集和实时采集;

知道sqoop是HDFS和其他数据源之间的数据交换工具;

知道flume可以用作实时的日志采集。

从前面的学习,对于大数据平台,你已经掌握的不少的知识和技能,搭建Hadoop集群,把数据采集到Hadoop上,使用Hive和MapReduce来分析数据,把分析结果同步到其他数据源。

接下来的问题来了,Hive使用的越来越多,你会发现很多不爽的地方,特别是速度慢,大多情况下,明明我的数据量很小,它都要申请资源,启动MapReduce来执行。

第五章:SQL

其实大家都已经发现Hive后台使用MapReduce作为执行引擎,实在是有点慢。因此SQL On Hadoop的框架越来越多,按我的了解,最常用的按照流行度依次为SparkSQL、Impala和Presto.这三种框架基于半内存或者全内存,提供了SQL接口来快速查询分析Hadoop上的数据。

我们目前使用的是SparkSQL,至于为什么用SparkSQL,原因大概有以下吧:使用Spark还做了其他事情,不想引入过多的框架;Impala对内存的需求太大,没有过多资源部署。

5.1 关于Spark和SparkSQL

什么是Spark,什么是SparkSQL。

Spark有的核心概念及名词解释。

SparkSQL和Spark是什么关系,SparkSQL和Hive是什么关系。

SparkSQL为什么比Hive跑的快。

5.2 如何部署和运行SparkSQL

Spark有哪些部署模式?

如何在Yarn上运行SparkSQL?

使用SparkSQL查询Hive中的表。Spark不是一门短时间内就能掌握的技术,因此建议在了解了Spark之后,可以先从SparkSQL入手,循序渐进。

关于Spark和SparkSQL,如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的。

第六章:数据多次利用

请不要被这个名字所诱惑。其实我想说的是数据的一次采集、多次消费。

在实际业务场景下,特别是对于一些监控日志,想即时的从日志中了解一些指标(关于实时计算,后面章节会有介绍),这时候,从HDFS上分析就太慢了,尽管是通过Flume采集的,但Flume也不能间隔很短就往HDFS上滚动文件,这样会导致小文件特别多。

为了满足数据的一次采集、多次消费的需求,这里要说的便是Kafka。

关于Kafka:什么是Kafka?Kafka的核心概念及名词解释。

如何部署和使用Kafka:使用单机部署Kafka,并成功运行自带的生产者和消费者例子。使用Java程序自己编写并运行生产者和消费者程序。Flume和Kafka的集成,使用Flume监控日志,并将日志数据实时发送至Kafka。

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的。

这时,使用Flume采集的数据,不是直接到HDFS上,而是先到Kafka,Kafka中的数据可以由多个消费者同时消费,其中一个消费者,就是将数据同步到HDFS。

如果你已经认真完整的学习了以上的内容,那么你应该已经具备以下技能和知识点:

为什么Spark比MapReduce快。

使用SparkSQL代替Hive,更快的运行SQL。

使用Kafka完成数据的一次收集,多次消费架构。

自己可以写程序完成Kafka的生产者和消费者。

从前面的学习,你已经掌握了大数据平台中的数据采集、数据存储和计算、数据交换等大部分技能,而这其中的每一步,都需要一个任务(程序)来完成,各个任务之间又存在一定的依赖性,比如,必须等数据采集任务成功完成后,数据计算任务才能开始运行。如果一个任务执行失败,需要给开发运维人员发送告警,同时需要提供完整的日志来方便查错。

第七章:越来越多的分析任务

不仅仅是分析任务,数据采集、数据交换同样是一个个的任务。这些任务中,有的是定时触发,有点则需要依赖其他任务来触发。当平台中有几百上千个任务需要维护和运行时候,仅仅靠crontab远远不够了,这时便需要一个调度监控系统来完成这件事。调度监控系统是整个数据平台的中枢系统,类似于AppMaster,负责分配和监控任务。

7.1 Apache Oozie

Oozie是什么?有哪些功能?

Oozie可以调度哪些类型的任务(程序)?

Oozie可以支持哪些任务触发方式?

安装配置Oozie。

7.2 其他开源的任务调度系统

Azkaban,light-task-scheduler,Zeus,等等。另外,我这边是之前单独开发的任务调度与监控系统,具体请参考《大数据平台任务调度与监控系统》。

第八章:我的数据要实时

在第六章介绍Kafka的时候提到了一些需要实时指标的业务场景,实时基本可以分为绝对实时和准实时,绝对实时的延迟要求一般在毫秒级,准实时的延迟要求一般在秒、分钟级。对于需要绝对实时的业务场景,用的比较多的是Storm,对于其他准实时的业务场景,可以是Storm,也可以是Spark Streaming。当然,如果可以的话,也可以自己写程序来做。

8.1 Storm

什么是Storm?有哪些可能的应用场景?

Storm由哪些核心组件构成,各自担任什么角色?

Storm的简单安装和部署。

自己编写Demo程序,使用Storm完成实时数据流计算。

8.2 Spark Streaming

什么是Spark Streaming,它和Spark是什么关系?

Spark Streaming和Storm比较,各有什么优缺点?

使用Kafka + Spark Streaming,完成实时计算的Demo程序。

至此,你的大数据平台底层架构已经成型了,其中包括了数据采集、数据存储与计算(离线和实时)、数据同步、任务调度与监控这几大模块。接下来是时候考虑如何更好的对外提供数据了。

第九章:数据要对外

通常对外(业务)提供数据访问,大体上包含以下方面。

离线:比如,每天将前一天的数据提供到指定的数据源(DB、FILE、FTP)等;离线数据的提供可以采用Sqoop、DataX等离线数据交换工具。

实时:比如,在线网站的推荐系统,需要实时从数据平台中获取给用户的推荐数据,这种要求延时非常低(50毫秒以内)。根据延时要求和实时数据的查询需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。

OLAP分析:OLAP除了要求底层的数据模型比较规范,另外,对查询的响应速度要求也越来越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的数据模型比较规模,那么Kylin是最好的选择。

即席查询:即席查询的数据比较随意,一般很难建立通用的数据模型,因此可能的方案有:Impala、Presto、SparkSQL。

这么多比较成熟的框架和方案,需要结合自己的业务需求及数据平台技术架构,选择合适的。原则只有一个:越简单越稳定的,就是最好的。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/tougao/12208841.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存