这个测试,假定可能是新加入的测试集,还是按照原来的需求转换,存放数据到指定的位置。
./build/tools/caffe.bin test -model=examples/mnist/lenet_train_test.prototxt -weights=examples/mnist/lenet_iter_10000.caffemodel -gpu=0
如果没有GPU则使用
./build/tools/caffe.bin test -model=examples/mnist/lenet_train_test.prototxt -weights=examples/mnist/lenet_iter_10000.caffemodel
从上面的指令,对应上图。
1、先是test表明是要评价一个已经训练好的模型。
2、然后指定模型prototxt文件铅郑悉,这是一个文本文件,详细描述了网络结构和数据集丛行信息。从mnist下面的train_lenet.sh指定的solver对应于examples/mnist/lenet_solver.prototxt,而lenet_solver.prototxt指定的模型为examples/mnist/lenet_train_test.prototxt。
3、然后在指定模型的具体的权重。刚好为examples/mnist/lenet_iter_10000.caffemodel
在cifar10模型下面调用已经训练好的模型,测试。
同上,是用train_quick.sh训练的。
./槐乎build/tools/caffe.bin test -model=examples/cifar10/cifar10_quick_train_test.prototxt -weights=examples/cifar10/cifar10_quick_iter_5000.caffemodel -gpu=0
1、先是test表明是要评价一个已经训练好的模型。
2、然后指定模型prototxt文件,这是一个文本文件,详细描述了网络结构和数据集信息。从cifar下面的train_quick.sh指定的solver对应于开始的examples/mnist/lenet_solver.prototxt和4000次以后snapshot的examples/cifar10/cifar10_quick_solver_lr1.prototxt,而这两者指定的模型都为cifar10_quick_train_test.prototxt。
3、然后在指定模型的具体的权重。为examples/cifar10/cifar10_quick_iter_5000.caffemodel
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)