Python 数据可视化:地理信息可视化及扩展应用

Python 数据可视化:地理信息可视化及扩展应用,第1张

在上一课中,我们已经介绍过使用 Plotly 实现地理信息可视化的方法。但是,那个工具对我们不是很友好,特别是由于某种不可抗力的存在,可能根本无法调试。

不过,pyecharts 的确在地理信息可视化上做得不错——如果仅做国内地图,特别推荐使用,还是通过示例来说明吧。

首先,要安装地图文件,安装方法如下:

不仅可以安装上述官方提供的地图文件,还能够自己制作个性化的地图扩展, 具体请点击这里参阅 。

有了上述基础,就可以进亩判行地理信息可视化了(以下示例的数据源闹笑, 请点击这里查看 )。

实现上述效果的类是 Geo,默认情况下绘制散点图,此外可以实现 type='effectScatter'(闪耀的散点图)和 type='heatmap'(热图)。

此图也是动态交互的,通过左侧图例选择不同数值范围,相应地会显示该范围内的数据。

如果按照前面所述安装了各种地图文件,还可以在 geo.add 方法中规定地理范围。

在 pyecharts 地图中认可的城市名称都如同上述结果显示的那样,例如“阜新”,不要写成“阜新市”。

下面就绘制江苏省的空气质量分布图。

输出结果:

这里的 geo.add 参数与前面的不同,导致了展示效果的差异。

一直以来,房价都是人们关注的话题,下面就用可视化的方式研究一下近十年(2009—2018 年)全国部分城市平均房价(数据源: https://github.com/qiwsir/DataSet/tree/master/house )。

输出结果:

在热图查看房价的基础上,为了更准确查看某些城市的房价迅弯改走向,可以使用折线图看看趋势,例如下列几个城市。

一般情况下,直接调用就可以了

但若你的参数是程序自动生成的,就有必逗虚要用山首燃apply了

def test(a,b):

print(a,b)

x=(1,2) #这个x由程序生芹薯成

apply(test,x) #x是可变参数,相当于调用test(1,2),你若写成test(x)就是错的


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/tougao/12259193.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-24
下一篇 2023-05-24

发表评论

登录后才能评论

评论列表(0条)

保存