Linux进程间通信(互斥锁、条件变量、读写锁、文件锁、信号灯)

Linux进程间通信(互斥锁、条件变量、读写锁、文件锁、信号灯),第1张

为了能够有效的控制多个进程之间的沟通过程,保证沟通过程的有序和和谐,OS必须提供一定的同步机制保证进程之间不会自说自话而是有效的协同工作。比如在 共享内存的通信方式中,两个或者多个进程都要对共享的内存进行数据写入,那么怎么才能保证一个进程在写入的过程中不被其它的进程打断,保证数据的完整性 呢?又怎么保证读取进程在读取数据的过程中数据不会变动,保证读取出的数据是完整有效的呢?

常用的同步方式有: 互斥锁、条件变量、读写锁、记录锁(文件锁)和信号灯.

互斥锁:

顾名思义,锁是用来锁住某种东西的,锁住之后只有有钥匙的人才能对锁住的东西拥有控制权(把锁砸了,把东西偷走的小偷不在我们的讨论范围了)。所谓互斥, 从字面上理解就是互相排斥。因此互斥锁从字面上理解就是一点进程拥有了这个锁,它将排斥其它所有的进程访问被锁住的东西,其它的进程如果需要锁就只能等待,等待拥有锁的进程把锁打开后才能继续运行。 在实现中,锁并不是与某个具体的变量进行关联,它本身是一个独立的对象。进(线)程在有需要的时候获得此对象,用完不需要时就释放掉。

互斥锁的主要特点是互斥锁的释放必须由上锁的进(线)程释放,如果拥有锁的进(线)程不释放,那么其它的进(线)程永远也没有机会获得所需要的互斥锁。

互斥锁主要用于线程之间的同步。

条件变量:

上文中提到,对于互斥锁而言,如果拥有锁的进(线)程不释放锁,其它进(线)程永远没机会获得锁,也就永远没有机会继续执行后续的逻辑。在实际环境下,一 个线程A需要改变一个共享变量X的值,为了保证在修改的过程中X不会被其它的线程修改,线程A必须首先获得对X的锁。现在假如A已经获得锁了,由于业务逻 辑的需要,只有当X的值小于0时,线程A才能执行后续的逻辑,于是线程A必须把互斥锁释放掉,然后继续“忙等”。如下面的伪代码所示:

1.// get x lock

2.while(x

信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在semtake的时候,就阻塞在哪里)。

而互斥锁是用在多线程多任务互斥的,一个线程占用了某一个资源,那么别的线程就无法访问,直到这个线程unlock,其他的线程才开始可以利用这个资源。比如对全局变量的访问,有时要加锁, *** 作完了,在解锁

有的时候锁和信号量会同时使用的。我记得以前做的一个项目就是既有semtake,又有lock。

Linux系统中,实现线程同步的方式大致分为六种,其中包括:互斥锁、自旋锁、信号量、条件变量、读写锁、屏障。最常用的线程同步方式就是互斥锁、自旋锁、信号量:

1、互斥锁

互斥锁本质就是一个特殊的全局变量,拥有lock和unlock两种状态,unlock的互斥锁可以由某个线程获得,当互斥锁由某个线程持有后,这个互斥锁会锁上变成lock状态,此后只有该线程有权力打开该锁,其他想要获得该互斥锁的线程都会阻塞,直到互斥锁被解锁。

互斥锁的类型:

①普通锁:互斥锁默认类型。当一个线程对一个普通锁加锁以后,其余请求该锁的线程将形成一个等待队列,并在锁解锁后按照优先级获得它,这种锁类型保证了资源分配的公平性。一个线程如果对一个已经加锁的普通锁再次加锁,将引发死锁对一个已经被其他线程加锁的普通锁解锁,或者对一个已经解锁的普通锁再次解锁,将导致不可预期的后果。

②检错锁:一个线程如果对一个已经加锁的检错锁再次加锁,则加锁 *** 作返回EDEADLK对一个已经被其他线程加锁的检错锁解锁或者对一个已经解锁的检错锁再次解锁,则解锁 *** 作返回EPERM。

③嵌套锁:该锁允许一个线程在释放锁之前多次对它加锁而不发生死锁其他线程要获得这个锁,则当前锁的拥有者必须执行多次解锁 *** 作对一个已经被其他线程加锁的嵌套锁解锁,或者对一个已经解锁的嵌套锁再次解锁,则解锁 *** 作返回EPERM。

④默认锁:一个线程如果对一个已经解锁的默认锁再次加锁,或者对一个已经被其他线程加锁的默认锁解锁,或者对一个解锁的默认锁解锁,将导致不可预期的后果这种锁实现的时候可能被映射成上述三种锁之一。

【老男孩教育】Linux运维云计算课程汇集了虚拟化、云计算、安全攻防、Python开发、SRE等技术,课堂效率高、内容丰富全面,由浅入深,循序渐进,帮助学员稳扎稳打,夯实基础,在有限的时间内帮助学员高效提升,成为符合企业需求的技术型人才。

2、自旋锁

自旋锁顾名思义就是一个死循环,不停的轮询,当一个线程未获得自旋锁时,不会像互斥锁一样进入阻塞休眠状态,而是不停的轮询获取锁,如果自旋锁能够很快被释放,那么性能就会很高,如果自旋锁长时间不能够被释放,甚至里面还有大量的IO阻塞,就会导致其他获取锁的线程一直空轮询,导致CPU使用率达到100%,特别CPU时间。

3、信号量

信号量是一个计数器,用于控制访问有限共享资源的线程数。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/tougao/6063804.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-13
下一篇 2023-03-13

发表评论

登录后才能评论

评论列表(0条)

保存