当多个进程同时访问一个文件的时候,普通的write/read在执行的时候,无法保证 *** 作的原子性,可能会导致文件被污染,达不到预期的结果。
任何一个需要多个函数调用的 *** 作都不可能是原子 *** 作,因为在两个函数调用间,内核可能会将进程挂起执行另外的进程。
如果想要避免这种情况的话,则需要使用pread/pwrite函数
ssize_t pread(int fd ,void *buffer ,size_t size,off_t offset)
返回真正读取到的字节数,offset是指的从文件开始位置起的offset个字节数开始读。其余的参数与read无异。
PS:
pread是无法中断的原子 *** 作,无法中断它的定位和读取 *** 作
pread读取过后的文件偏移量不会发生改变
同理pwrite也是一样的
而在文件创建的时候也是一样的,当需要做文件创建同步的时候,我们需要在O_CREATE的时候,加上O_EXCL标志位,当已经创建过的话,会返回fd,否则返回错误
int dup( int filedes):
传入一个文件描述符,返回当前可用的最小文件描述符。
int dup2(int filedes,int filedes2):
传入文件描述符,以及新的文件描述符,如果新的文件描述符所指向的文件已经打开,则会强行将其关闭后,将该文件描述符指向到已存在的文件描述符。
如果filedes和filedes2指向同一个文件,则不做任何处理,直接返回filedes2,不会关闭文件
新返回回来的filedes2会共享filedes的文件状态标识,文件偏移量等等信息。因为它们的文件指针会指向文件表的同一个位置。只是fd不一样而已。
Linux内核设计与实现 十、内核同步方法
手把手教Linux驱动5-自旋锁、信号量、互斥体概述
== 基础概念: ==
并发 :多个执行单元同时进行或多个执行单元微观串行执行,宏观并行执行
竞态 :并发的执行单元对共享资源(硬件资源和软件上的全局变量)的访问而导致的竟态状态。
临界资源 :多个进程访问的资源
临界区 :多个进程访问的代码段
== 并发场合: ==
1、单CPU之间进程间的并发 :时间片轮转,调度进程。 A进程访问打印机,时间片用完,OS调度B进程访问打印机。
2、单cpu上进程和中断之间并发 :CPU必须停止当前进程的执行中断
3、多cpu之间
4、单CPU上中断之间的并发
== 使用偏向: ==
==信号量用于进程之间的同步,进程在信号量保护的临界区代码里面是可以睡眠的(需要进行进程调度),这是与自旋锁最大的区别。==
信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是共享内存方式的进程间通信。本质上,信号量是一个计数器,它用来记录对某个资源(如共享内存)的存取状况。它负责协调各个进程,以保证他们能够正确、合理的使用公共资源。它和spin lock最大的不同之处就是:无法获取信号量的进程可以睡眠,因此会导致系统调度。
1、==用于进程与进程之间的同步==
2、==允许多个进程进入临界区代码执行,临界区代码允许睡眠;==
3、信号量本质是==基于调度器的==,在UP和SMP下没有区别;进程获取不到信号量将陷入休眠,并让出CPU;
4、不支持进程和中断之间的同步
5、==进程调度也是会消耗系统资源的,如果一个int型共享变量就需要使用信号量,将极大的浪费系统资源==
6、信号量可以用于多个线程,用于资源的计数(有多种状态)
==信号量加锁以及解锁过程:==
sema_init(&sp->dead_sem, 0)/ 初始化 /
down(&sema)
临界区代码
up(&sema)
==信号量定义:==
==信号量初始化:==
==dowm函数实现:==
==up函数实现:==
信号量一般可以用来标记可用资源的个数。
举2个生活中的例子:
==dowm函数实现原理解析:==
(1)down
判断sem->count是否 >0,大于0则说明系统资源够用,分配一个给该进程,否则进入__down(sem)
(2)__down
调用__down_common(sem, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT)其中TASK_UNINTERRUPTIBLE=2代表进入睡眠,且不可以打断;MAX_SCHEDULE_TIMEOUT休眠最长LONG_MAX时间;
(3)list_add_tail(&waiter.list, &sem->wait_list)
把当前进程加入到sem->wait_list中;
(3)先解锁后加锁
进入__down_common前已经加锁了,先把解锁,调用schedule_timeout(timeout),当waiter.up=1后跳出for循环;退出函数之前再加锁;
Linux内核ARM构架中原子变量的底层实现研究
rk3288 原子 *** 作和原子位 *** 作
原子变量适用于只共享一个int型变量;
1、原子 *** 作是指不被打断的 *** 作,即它是最小的执行单位。
2、最简单的原子 *** 作就是一条条的汇编指令(不包括一些伪指令,伪指令会被汇编器解释成多条汇编指令)
==常见函数:==
==以atomic_inc为例介绍实现过程==
在Linux内核文件archarmincludeasmatomic.h中。 执行atomic_read、atomic_set这些 *** 作都只需要一条汇编指令,所以它们本身就是不可打断的。 需要特别研究的是atomic_inc、atomic_dec这类读出、修改、写回的函数。
所以atomic_add的原型是下面这个宏:
atomic_add等效于:
result(%0) tmp(%1) (v->counter)(%2) (&v->counter)(%3) i(%4)
注意:根据内联汇编的语法,result、tmp、&v->counter对应的数据都放在了寄存器中 *** 作。如果出现上下文切换,切换机制会做寄存器上下文保护。
(1)ldrex %0, [%3]
意思是将&v->counter指向的数据放入result中,并且(分别在Local monitor和Global monitor中)设置独占标志。
(2)add %0, %0, %4
result = result + i
(3)strex %1, %0, [%3]
意思是将result保存到&v->counter指向的内存中, 此时 Exclusive monitors会发挥作用,将保存是否成功的标志放入tmp中。
(4) teq %1, #0
测试strex是否成功(tmp == 0 ??)
(5)bne 1b
如果发现strex失败,从(1)再次执行。
Spinlock 是内核中提供的一种比较常见的锁机制,==自旋锁是“原地等待”的方式解决资源冲突的==,即,一个线程获取了一个自旋锁后,另外一个线程期望获取该自旋锁,获取不到,只能够原地“打转”(忙等待)。由于自旋锁的这个忙等待的特性,注定了它使用场景上的限制 —— 自旋锁不应该被长时间的持有(消耗 CPU 资源),一般应用在==中断上下文==。
1、spinlock是一种死等机制
2、信号量可以允许多个执行单元进入,spinlock不行,一次只能允许一个执行单元获取锁,并且进入临界区,其他执行单元都是在门口不断的死等
3、由于不休眠,因此spinlock可以应用在中断上下文中;
4、由于spinlock死等的特性,因此临界区执行代码尽可能的短;
==spinlock加锁以及解锁过程:==
spin_lock(&devices_lock)
临界区代码
spin_unlock(&devices_lock)
==spinlock初始化==
==进程和进程之间同步==
==本地软中断之间同步==
==本地硬中断之间同步==
==本地硬中断之间同步并且保存本地中断状态==
==尝试获取锁==
== arch_spinlock_t结构体定义如下: ==
== arch_spin_lock的实现如下: ==
lockval(%0) newval(%1) tmp(%2) &lock->slock(%3) 1 <<TICKET_SHIFT(%4)
(1)ldrex %0, [%3]
把lock->slock的值赋值给lockval;并且(分别在Local monitor和Global monitor中)设置独占标志。
(2)add %1, %0, %4
newval =lockval +(1<<16)相当于next+1;
(3)strex %2, %1, [%3]
newval =lockval +(1<<16)相当于next+1;
意思是将newval保存到 &lock->slock指向的内存中, 此时 Exclusive monitors会发挥作用,将保存是否成功的标志放入tmp中。
(4) teq %2, #0
测试strex是否成功
(5)bne 1b
如果发现strex失败,从(1)再次执行。
通过上面的分析,可知关键在于strex的 *** 作是否成功的判断上。而这个就归功于ARM的Exclusive monitors和ldrex/strex指令的机制。
(6)while (lockval.tickets.next != lockval.tickets.owner)
如何lockval.tickets的next和owner是否相等。相同则跳出while循环,否则在循环内等待判断;
* (7)wfe()和smp_mb() 最终调用#define barrier() asm volatile ("": : :"memory") *
阻止编译器重排,保证编译程序时在优化屏障之前的指令不会在优化屏障之后执行。
== arch_spin_unlock的实现如下: ==
退出锁时:tickets.owner++
== 出现死锁的情况: ==
1、拥有自旋锁的进程A在内核态阻塞了,内核调度B进程,碰巧B进程也要获得自旋锁,此时B只能自旋转。 而此时抢占已经关闭,(单核)不会调度A进程了,B永远自旋,产生死锁。
2、进程A拥有自旋锁,中断到来,CPU执行中断函数,中断处理函数,中断处理函数需要获得自旋锁,访问共享资源,此时无法获得锁,只能自旋,产生死锁。
== 如何避免死锁: ==
1、如果中断处理函数中也要获得自旋锁,那么驱动程序需要在拥有自旋锁时禁止中断;
2、自旋锁必须在可能的最短时间内拥有
3、避免某个获得锁的函数调用其他同样试图获取这个锁的函数,否则代码就会死锁;不论是信号量还是自旋锁,都不允许锁拥有者第二次获得这个锁,如果试图这么做,系统将挂起;
4、锁的顺序规则(a) 按同样的顺序获得锁;b) 如果必须获得一个局部锁和一个属于内核更中心位置的锁,则应该首先获取自己的局部锁 c) 如果我们拥有信号量和自旋锁的组合,则必须首先获得信号量;在拥有自旋锁时调用down(可导致休眠)是个严重的错误的;)
== rw(read/write)spinlock: ==
加锁逻辑:
1、假设临界区内没有任何的thread,这个时候任何的读线程和写线程都可以键入
2、假设临界区内有一个读线程,这时候信赖的read线程可以任意进入,但是写线程不能进入;
3、假设临界区有一个写线程,这时候任何的读、写线程都不可以进入;
4、假设临界区内有一个或者多个读线程,写线程不可以进入临界区,但是写线程也无法阻止后续的读线程继续进去,要等到临界区所有的读线程都结束了,才可以进入,可见:==rw(read/write)spinlock更加有利于读线程;==
== seqlock(顺序锁): ==
加锁逻辑:
1、假设临界区内没有任何的thread,这个时候任何的读线程和写线程都可以键入
2、假设临界区内没有写线程的情况下,read线程可以任意进入;
3、假设临界区有一个写线程,这时候任何的读、写线程都不可以进入;
4、假设临界区内只有read线程的情况下,写线程可以理解执行,不会等待,可见:==seqlock(顺序锁)更加有利于写线程;==
读写速度 : CPU >一级缓存 >二级缓存 >内存 ,因此某一个CPU0的lock修改了,其他的CPU的lock就会失效;那么其他CPU就会依次去L1 L2和主存中读取lock值,一旦其他CPU去读取了主存,就存在系统性能降低的风险;
mutex用于互斥 *** 作。
互斥体只能用于一个线程,资源只有两种状态(占用或者空闲)
1、mutex的语义相对于信号量要简单轻便一些,在锁争用激烈的测试场景下,mutex比信号量执行速度更快,可扩展
性更好,
2、另外mutex数据结构的定义比信号量小、
3、同一时刻只有一个线程可以持有mutex
4、不允许递归地加锁和解锁
5、当进程持有mutex时,进程不可以退出。
• mutex必须使用官方API来初始化。
• mutex可以睡眠,所以不允许在中断处理程序或者中断下半部中使用,例如tasklet、定时器等
==常见 *** 作:==
struct mutex mutex_1
mutex_init(&mutex_1)
mutex_lock(&mutex_1)
临界区代码;
mutex_unlock(&mutex_1)
==常见函数:==
=
linux中关于原子 *** 作
2016年08月02日
原子 *** 作:就是在执行某一 *** 作时不被打断。
linux原子 *** 作问题来源于中断、进程的抢占以及多核smp系统中程序的并发执行。
对于临界区的 *** 作可以加锁来保证原子性,对于全局变量或静态变量 *** 作则需要依赖于硬件平台的原子变量 *** 作。
因此原子 *** 作有两类:一类是各种临界区的锁,一类是 *** 作原子变量的函数。
对于arm来说,单条汇编指令都是原子的,多核smp也是,因为有总线仲裁所以cpu可以单独占用总线直到指令结束,多核系统中的原子 *** 作通常使用内存栅障(memory barrier)来实现,即一个CPU核在执行原子 *** 作时,其他CPU核必须停止对内存 *** 作或者不对指定的内存进行 *** 作,这样才能避免数据竞争问题。但是对于load update store这个过程可能被中断、抢占,所以arm指令集有增加了ldrex/strex这样的实现load update store的原子指令。
但是linux种对于c/c++程序(一条c编译成多条汇编),由于上述提到的原因不能保证原子性,因此linux提供了一套函数来 *** 作全局变量或静态变量。
一.整型原子 *** 作定义于#include<asm/atomic.h>分为 定义,获取,加减,测试,返回。void atomic_set(atomic_t *v,int i) //设置原子变量v的值为iatomic_t v = ATOMIC_INIT(0) //定义原子变量v,并初始化为0atomic_read(atomic_t* v) //返回原子变量v的值void atomic_add(int i, atomic_t* v) //原子变量v增加ivoid atomic_sub(int i, atomic_t* v) void atomic_inc(atomic_t* v) //原子变量增加1void atomic_dec(atomic_t* v) int atomic_inc_and_test(atomic_t* v) //先自增1,然后测试其值是否为0,若为0,则返回true,否则返回falseint atomic_dec_and_test(atomic_t* v) int atomic_sub_and_test(int i, atomic_t* v) //先减i,然后测试其值是否为0,若为0,则返回true,否则返回false注意:只有自加,没有加 *** 作int atomic_add_return(int i, atomic_t* v) //v的值加i后返回新的值int atomic_sub_return(int i, atomic_t* v) int atomic_inc_return(atomic_t* v) //v的值自增1后返回新的值int atomic_dec_return(atomic_t* v) 二.位原子 *** 作定义于#include<asm/bitops.h>分为 设置,清除,改变,测试void set_bit(int nr, volatile void* addr) //设置地址addr的第nr位,所谓设置位,就是把位写为1void clear_bit(int nr, volatile void* addr) //清除地址addr的第nr位,所谓清除位,就是把位写为0void change_bit(int nr, volatile void* addr) //把地址addr的第nr位反转int test_bit(int nr, volatile void* addr) //返回地址addr的第nr位int test_and_set_bit(int nr, volatile void* addr) //测试并设置位若addr的第nr位非0,则返回true若addr的第nr位为0,则返回falseint test_and_clear_bit(int nr, volatile void* addr) //测试并清除位int test_and_change_bit(int nr, volatile void* addr) //测试并反转位上述 *** 作等同于先执行test_bit(nr,voidaddr)然后在执行xxx_bit(nr,voidaddr)举个简单例子:为了实现设备只能被一个进程打开,从而避免竞态的出现static atomic_t scull_available = ATOMIC_INIT(1) //init atomic在scull_open 函数和scull_close函数中:int scull_open(struct inode *inode, struct file *filp){ struct scull_dev *dev // device information dev = container_of(inode->i_cdev, struct scull_dev, cdev) filp->private_data = dev // for other methods if(!atomic_dec_and_test(&scull_available)){ atomic_inc(&scull_available) return -EBUSY } return 0 // success }int scull_release(struct inode *inode, struct file *filp){ atomic_inc(&scull_available) return 0}
假设原子变量的底层实现是由一个汇编指令实现的,这个原子性必然有保障。但是如果原子变量的实现是由多条指令组合而成的,那么对于SMP和中断的介入会不会有什么影响呢?我在看ARM的原子变量 *** 作实现的时候,发现其是由多条汇编指令(ldrex/strex)实现的。在参考了别的书籍和资料后,发现大部分书中对这两条指令的描诉都是说他们是支持在SMP系统中实现多核共享内存的互斥访问。但在UP系统中使用,如果ldrex/strex和之间发生了中断,并在中断中也用ldrex/strex *** 作了同一个原子变量会不会有问题呢?就这个问题,我认真看了一下内核的ARM原子变量源码和ARM官方对于ldrex/strex的功能解释,总结如下:
一、ARM构架的原子变量实现结构
对于ARM构架的原子变量实现源码位于:arch/arm/include/asm/atomic.h
其主要的实现代码分为ARMv6以上(含v6)构架的实现和ARMv6版本以下的实现。
该文件的主要结构如下:
#if __LINUX_ARM_ARCH__ >= 6
......(通过ldrex/strex指令的汇编实现)
#else /* ARM_ARCH_6 */
#ifdef CONFIG_SMP
#error SMP not supported on pre-ARMv6 CPUs
#endif
......(通过关闭CPU中断的C语言实现)
#endif /* __LINUX_ARM_ARCH__ */
......
#ifndef CONFIG_GENERIC_ATOMIC64
......(通过ldrexd/strexd指令的汇编实现的64bit原子变量的访问)
#else /* !CONFIG_GENERIC_ATOMIC64 */
#include <asm-generic/atomic64.h>
#endif
#include <asm-generic/atomic-long.h>
这样的安排是依据ARM核心指令集版本的实现来做的:
(1)在ARMv6以上(含v6)构架有了多核的CPU,为了在多核之间同步数据和控制并发,ARM在内存访问上增加了独占监测(Exclusive monitors)机制(一种简单的状态机),并增加了相关的ldrex/strex指令。请先阅读以下参考资料(关键在于理解local monitor和Global monitor):
1.2.2. Exclusive monitors
4.2.12. LDREX 和 STREX
(2)对于ARMv6以前的构架不可能有多核CPU,所以对于变量的原子访问只需要关闭本CPU中断即可保证原子性。
对于(2),非常好理解。
但是(1)情况,我还是要通过源码的分析才认同这种代码,以下我仅仅分析最具有代表性的atomic_add源码,其他的API原理都一样。如果读者还不熟悉C内嵌汇编的格式,请参考《ARM GCC 内嵌汇编手册》
二、内核对于ARM构架的atomic_add源码分析
/*
* ARMv6 UP 和 SMP 安全原子 *** 作。 我们是用独占载入和
* 独占存储来保证这些 *** 作的原子性。我们可能会通过循环
* 来保证成功更新变量。
*/
static inline void atomic_add(int i, atomic_t *v)
{
unsigned long tmp
int result
__asm__ __volatile__("@ atomic_add\n"
"1: ldrex %0, [%3]\n"
" add %0, %0, %4\n"
" strex %1, %0, [%3]\n"
" teq %1, #0\n"
" bne 1b"
: "=&r" (result), "=&r" (tmp), "+Qo" (v->counter)
: "r" (&v->counter), "Ir" (i)
: "cc")
}
源码分析:
注意:根据内联汇编的语法,result、tmp、&v->counter对应的数据都放在了寄存器中 *** 作。如果出现上下文切换,切换机制会做寄存器上下文保护。
(1)ldrex %0, [%3]
意思是将&v->counter指向的数据放入result中,并且(分别在Local monitor和Global monitor中)设置独占标志。
(2)add %0, %0, %4
result = result + i
(3)strex %1, %0, [%3]
意思是将result保存到&v->counter指向的内存中,此时 Exclusive monitors会发挥作用,将保存是否成功的标志放入tmp中。
(4) teq %1, #0
测试strex是否成功(tmp == 0 ??)
(5)bne 1b
如果发现strex失败,从(1)再次执行。
通过上面的分析,可知关键在于strex的 *** 作是否成功的判断上。而这个就归功于ARM的Exclusive monitors和ldrex/strex指令的机制。以下通过可能的情况分析ldrex/strex指令机制。(请阅读时参考4.2.12. LDREX 和 STREX)
1、UP系统或SMP系统中变量为非CPU间共享访问的情况
此情况下,仅有一个CPU可能访问变量,此时仅有Local monitor需要关注。
假设CPU执行到(2)的时候,来了一个中断,并在中断里使用ldrex/strex *** 作了同一个原子变量。则情况如下图所示:
A:处理器标记一个物理地址,但访问尚未完毕
B:再次标记此物理地址访问尚未完毕(与A重复)
C:进行存储 *** 作,清除以上标记,返回0( *** 作成功)
D:不会进行存储 *** 作,并返回1( *** 作失败)
也就是说,中断例程里的 *** 作会成功,被中断的 *** 作会失败重试。
2、SMP系统中变量为CPU间共享访问的情况
此情况下,需要两个CPU间的互斥访问,此时ldrex/strex指令会同时关注Local monitor和Global monitor。
(i)两个CPU同时访问同个原子变量(ldrex/strex指令会关注Global monitor。)
A:将该物理地址标记为CPU0独占访问,并清除CPU0对其他任何物理地址的任何独占访问标记。
B:标记此物理地址为CPU1独占访问,并清除CPU1对其他任何物理地址的任何独占访问标记。
C:没有标记为CPU0独占访问,不会进行存储,并返回1( *** 作失败)。
D:已被标记为CPU1独占访问,进行存储并清除独占访问标记,并返回0( *** 作成功)。
也就是说,后执行ldrex *** 作的CPU会成功。
(ii)同一个CPU因为中断,“嵌套”访问同个原子变量(ldrex/strex指令会关注Local monito)
A:将该物理地址标记为CPU0独占访问,并清除CPU0对其他任何物理地址的任何独占访问标记。
B:再次标记此物理地址为CPU0独占访问,并清除CPU0对其他任何物理地址的任何独占访问标记。
C:已被标记为CPU0独占访问,进行存储并清除独占访问标记,并返回0( *** 作成功)。
D:没有标记为CPU0独占访问,不会进行存储,并返回1( *** 作失败)。
也就是说,中断例程里的 *** 作会成功,被中断的 *** 作会失败重试。
(iii)两个CPU同时访问同个原子变量,并同时有CPU因中断“嵌套”访问改原子变量(ldrex/strex指令会同时关注Local monitor和Global monitor)
虽然对于人来说,这种情况比较BT。但是在飞速运行的CPU来说,BT的事情随时都可能发生。
A:将该物理地址标记为CPU0独占访问,并清除CPU0对其他任何物理地址的任何独占访问标记。
B:标记此物理地址为CPU1独占访问,并清除CPU1对其他任何物理地址的任何独占访问标记。
C:再次标记此物理地址为CPU0独占访问,并清除CPU0对其他任何物理地址的任何独占访问标记。
D:已被标记为CPU0独占访问,进行存储并清除独占访问标记,并返回0( *** 作成功)。
E:没有标记为CPU1独占访问,不会进行存储,并返回1( *** 作失败)。
F:没有标记为CPU0独占访问,不会进行存储,并返回1( *** 作失败)。
当然还有其他许多复杂的可能,也可以通过ldrex/strex指令的机制分析出来。从上面列举的分析中,我们可以看出:ldrex/strex可以保证在任何情况下(包括被中断)的访问原子性。所以内核中ARM构架中的原子 *** 作是可以信任的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)