大数据就业岗位有哪些

大数据就业岗位有哪些,第1张

数据就业的岗位:ETL研发、Hadoop开发、信息架构开发、数据安全研究。

1、ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

2、hadoop是一个由Apache基金会所开发的分布式系统基础架构。可以使用户在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。hadoop的框架最核心的设计就是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算。

3、信息架构文件是统筹安排信息的基础,这些统筹安排主要集中在搭建某个特殊产品、一套产品或单个产品的信息架构。除了信息架构和信息规划外还有信息设计,它主要就是为支持信息架构和规划而进行的实际 *** 作活动。

4、数据安全研究:数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。

1、大数据开发工程师

负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。

2、数据分析师

进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见。

3、数据挖掘工程师

商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。

4、数据库开发

设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等。

最后,不论是从事大数据开发岗位,还是大数据运维和大数据分析岗位,这些岗位对于从业者的要求也都比较高,尤其要注重动手实践能力的培养,所以大数据专业的学生一方面要尽量丰富自身的知识结构,另一方面还需要注重动手实践能力的培养。

学大数据从事的职业常常分为大数据系统研发人员、大数据应用开发人员和大数据分析人员,常见的职业有数据分析师、数据架构师、数据挖掘工程师、数据算法工程师等等。

以下是学大数据可以从事的职业介绍:

1、数据分析师:从事行业数据搜集、整理、分析方面的工作,依据数据做出行业研究、评估和预测。需要掌握SPSS、STATISTIC、Eviews、SAS等数据分析工具以及数据分析的营销思维。

2、数据架构师:负责平台的整体数据架构设计,完成从业务模型到数据模型的设计工作,根据业务功能、业务模型,进行数据库建模设计,完成各种面向业务目标的数据分析模型的定义和应用开发,平台数据提取、数据挖掘及数据分析。

3、数据应用师:用常人能理解的语言表述出数据所蕴含的信息,并根据数据分析结论推动企业内部做出调整。将数据还原到产品中,为产品所用。

4、数据挖掘工程师:从大量的数据中通过算法搜索隐藏于其中的信息,使企业决策智能化、自动化,提高企业工作效率,减少错误决策的可能性。需要具备深厚的统计学基础,需要熟悉R、SAS、 SPSS等统计分析软件。

5、数据算法工程师:负责大数据产品数据挖掘算法与模型部分的设计,制定数据建模、数据处理和数据安全等架构规范并落地实施。需要具备扎实的数据挖掘基础知识,精通机器学习、数学统计常用算法,掌握常见分布式计算框架和技术原理,如Hadoop、MapReduce、 Yarn、Storm、Spark等;熟悉Linux *** 作系统和Shell编程,至少熟练掌握一门编程语言。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/tougao/6085972.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-14
下一篇 2023-03-14

发表评论

登录后才能评论

评论列表(0条)

保存