1、同程旅行官网:登录同程旅行官网后,可以在后台系统中查看不同维度的用户数据,如用户地域分布、预订偏好、消费习惯等。
2、数据分析工具:使用数据分析工具(如GoogleAnalytics、百度统计等)对同程旅行网站进行监测,获取来源渠道、用户行为、转化情况等数据。
3、第三方分析报告:可以通过购买第三方的市场调研报告来了解同程旅行在市场占有率和用户满意度等方面的表现。
移动端要分网站和app
网站的行为分析,跟pc端类似,但是在设备、浏览器、地域方面的数据需要关注更多。
app,下载源、使用率、使用频次、时间、功能、卸载等。更细一些,可以分析app的人群特征、使用习惯,这都需要和具体软件功能结合统计。
2)测试集群服务器规划
下面就是一个示例,表示业务字段的上传。
示例日志(服务器时间戳 | 日志):
下面是各个埋点日志格式。其中商品点击属于信息流的范畴
事件名称:loading
事件标签:display
事件标签:newsdetail
事件名称:ad
事件标签:notification
事件标签: active_foreground
事件标签: active_background
描述:评论表
描述:收藏
描述:所有的点赞表
回到顶部
事件标签: start
1)创建log-collector 2)创建一个包名:comkggappclient 3)在comkggappclient包下创建一个类,AppMain。 4)在pomxml文件中添加如下内容
注意:comkggappclientAppMain要和自己建的全类名一致。
1)创建包名:comkggbean 2)在comkggbean包下依次创建如下bean对象
在AppMain类中添加如下内容:
Logback主要用于在磁盘和控制台打印日志。
Logback具体使用: 1)在resources文件夹下创建logbackxml文件。 2)在logbackxml文件中填写如下配置
1)采用Maven对程序打包
2)采用带依赖的jar包。包含了程序运行需要的所有依赖。
3)后续日志生成过程,在安装完Hadoop和Zookeeper之后执行。
这个方法还是很多的,总体来说是分“维度”。 比如说,你装了app 他可以然你短信注册,这样就拿到了你的电话号码。 你开通了移动连接网络,通过LBS的模式他就知道你经常去哪,在哪停留。 你登录其他app 他会知道你的手机使用习惯。 你发布一些什么
浅析用户行为分析的意义及5大应用场景
通过用户行为分析才能知道用户画像、用户在网站上个各种浏览、点击、购买背后的商业真相,用户行为分析的价值不言而喻。一、什么是用户行为?
用户行为由最简单的五个元素构成:时间、地点、人物、交互、交互的内容。
(一)什么是用户行为?
对用户行为进行分析,要将其定义为各种事件。比如用户搜索是一个事件,在什么时间、什么平台上、哪一个ID、做了搜索、搜索的内容是什么。这是一个完整的事件,也是对用户行为的一个定义;我们可以在网站或者是 APP 中定义千千万万个这样的事件。
有了这样的事件以后,就可以把用户行为连起来观察。用户首次进入网站后就是一个新用户,他可能要注册,那么注册行为就是一个事件。注册要填写个人信息,之后他可能开始搜索买东西,所有这些都是用户行为的事件。
(二)如何获取用户行为数据?
那么,我们又该如何去监测这些用户行为数据呢?
一种非常传统、非常普遍的方式就是通过写代码去定义这个事件。在网站需要监测用户行为数据的地方加载一段代码,比如说注册按钮、下单按钮等。加载了监测代码,我们才能知道用户是否点击了注册按钮、用户下了什么订单。
所有这些通过写代码来详细描述事件和属性的方式,国内都统称为“埋点”。这是一种非常耗费人力的工程,并且过程非常繁琐重复;但是大部分互联网公司仍然雇佣了大批埋点团队。
二、为什么要做用户行为分析?
既然这么麻烦,那为什么要做用户行为分析?
因为只有做了用户行为分析才能知道用户画像、才能知道用户在网站上个各种浏览、点击、购买背后的商业真相。
简单讲,分析的主要方式就是关注流失,尤其是对转化有要求的网站。我们希望用户不要流失,上来之后不要走。像很多 O2O 产品,用户一上来就有很多补贴;一旦钱烧完了,用户就都走了。这样的产品或者商业模式并不佳,我们希望用户真正找到平台的价值,不停的来,不要流失。
用户行为分析帮助分析用户怎么流失、为什么流失、在哪里流失。
比如最简单的一个搜索行为:某一个 ID 什么时间搜索了关键词、看了哪一页、哪几个结果,同时这个 ID 在哪个时间下单购买了,这个整个行为都非常重要的。如果中间他对搜索结果不满意,他肯定会再搜一次,把关键词换成别的,然后才能够搜索到结果。
用户行为分析还能做哪些事情?
当你有了很多用户行为数据、定义事件之后,你可以把用户数据做成一个按小时、按天,或者按用户级别、事件级别拆分的一个表。这个表用来做什么?一个是知道用户最简单事件,比如登录或者是购买,也可以知道哪些是优质用户、哪些是即将流失的客户,这样的数据每天或每个小时都能看到。
三、用户行为分析的五大场景
有了用户的行为数据以后,我们有哪些应用场景呢?
拉新,也就是获取新用户。
转化,比如电商特别注重订单转化率。
促活,如何让用户经常使用我们的产品。
留存,提前发现可能流失用户,降低流失率。
变现,发现高价值用户,提高销售效率。
(一)拉新
2008年我在 eBay 时,我的工作就是分析 SEM 和 SEO 的每个关键词的 ROI。eBay 每天要向谷歌买400万个关键词,除了SEM、SEO 我们还要分析其它各种合作伙伴渠道。比如一家小电商网站上面放了 eBay 的链接,而后用户通过该链接最终在 eBay 上完成了购买,eBay 就会分钱给这家网站。
eBay 特别注重是哪个搜索引擎、哪个关键词带来的流量;关键词是付费还是免费的。从谷歌那边搜素引擎词带来了很多流量,但是这些流量是否在 eBay 上成单,所以这个数据还要跟 eBay 本身数据结合、然后再做渠道分配,到底成单的是哪个渠道。整个数据链要从头到尾打通,需要把两边的数据整合之后才能做到。
(二)转化
以注册转化漏斗为例,第一步我们知道网页上有哪些注册入口,很多网站的注册入口不只一个,需要定义每个事件;我们还想知道下一步多少人、多少百分比的人点击了注册按钮、多少人打开了验证页;多少人登录了,多少人完成了整个完整的注册。
期间每一步都会有用户流失,漏斗做完后,我们就可以直观看到,每个环节的流失率。
(三)促活
还有一个是用户使用产品的流畅度。我们可以分析具体用户行为,比如访问时长,在那个页面上停留时间特别长,尤其在 APP 上会特别明显。再有是完善用户画像,拿用户行为分析做用户画像是比较准的。
举个例子,在美国有一个非常有名的在线视频网络 Netflix。Netflix 非常有意思,通过用户行为分析,他把你一家人都进行精准分析定义。你们一家人有多少人,是大人还是小孩,你最喜欢看的是哪三部**?你的行为输出越多,他的推荐就会越来越精准。
(四)留存
用户流失不是说一下子就流失了,一些细微、小的一些行为,就能预示他将来会流失。
在LinkedIn的时候,我们要去追踪用户的使用行为。比如说有没有登录、登录之后有没有搜简历、有没有上传简历等等。用户这些点点滴滴的行为,都很重要。有了这些数据支撑,LinkedIn的产品、销售每天都要去看用户报告,最简单的就是用户使用行为有没有下降、哪些行为下降、哪些用户用的特别好等,以此来维护用户关系。
(五)变现
LinkedIn 是一家 2C 又 2B 的公司,在全球有4亿的用户,有很多真实用户的简历信息。2B 的业务是LinkedIn 为每一个企业 HR 销售的,目的就是帮助美国的企业去找中高端的人才,这里面有很多的不同的产品线。LinkedIn 本身就是一个社交网络,用户是经理、VP还是总监,还是业务类的,市场的、销售的等等这些数据在 LinkedIn 上都聚合成一个公司的纬度。
通过这个简单的分布,就可以迅速看出来人才流失情况。如果是蓝的多,说明这家公司的人才吸引方面是强的,如果是红色的多,说明这家公司人才储备和招聘方面正处于颓势。我们把数据展示给最终客户,基本上就可以拿到单子。我们可以通过数据来讲故事。我们一开始做了很多的报告,销售可以拿去讲故事,可以很快促进成单。
所有这些是通过用户行为分析做出来的,不是通过拍脑门或者是第三方数据,用户行为分析的价值不言而喻。
您可以通过分析小程序的用户行为,来获取扫码量的数据。小程序的创建者可以通过官方提供的小程序管理后台,来查看小程序的扫码量数据,以及其他用户行为数据,从而可以了解小程序的使用情况。此外,小程序创建者也可以使用第三方分析工具,来获取更加详细的小程序用户行为数据,从而更好地了解小程序的使用情况。
用户行为特征
用户行为特征,对于运营来说用户的行为是需要关注的一个点,很多时候用户的行为决定了一个网站甚至是一个软件能否继续运运营下去,所以通常都是要对于用户行为特征进行一个分析,下面一起看看相关内容。
用户行为特征1用户行为是用户在产品上产生的行为,实际表现为相关的用户数据。产品经理运用不同分析方法对不同数据进行分析,进而为产品迭代和发展提供方向。
一、用户行为是什么?
1、用户行为
用户行为是用户在产品上产生的行为。我们以小明的case具象化用户行为表现:
因为小明关注作者的信息被记录了下来,当该作者有发布信息时,则会通知所有关注他的人,而小明也是其中之一。
小明关注作者的信息记录,则是行为数据。小明的行为数据会有 启动app、浏览、查看图集、播放视频、点赞、关注作者……
2、用户行为数据
用户行为数据是从一次次的行为中而来的,行为数据是通过埋点进行监控(相见埋点介绍)、后续一篇文章将介绍如何(设计埋点)。通常是数据同学完成埋点设计,由开发完成监控程序 或 调用SDK。针对小明的行为(假设以下均已埋点):
3、用户行为分析
是指对用户行为数据进行数据分析、研究。
4、用户行为分析的作用
(1)通过用户行为分析,可以还原用户使用的真实过程。
一个xxx的人在什么样的环境中(由于什么样的行为)在时间点做了xxx事情做了什么事情结果如何
(2)“了解用户,还原用户”是“以用户中心”的第一步。只有详细、清楚的了解用户的行为习惯、真实的使用路径、进而找出 产品使用、渠道推广等过程中存在的问题,提高用户/页面/业务过程中的转化率。
(3)用户行为分析(case需要补充)可以用于
A、拉新:渠道分析、SEM分析、用户质量分析、
B、转化:新增用户注册转化过程、产品使用过程转化(搜索、推荐等)、push推送调起过程、站外拉起过程
C、促活:用户停留时长、用户行为分布、
D、留存:用户留存分析
E、商业化:根据用户历史行为展示广告
二、如何进行用户行为分析?
1、行为事件分析
行为事件分析方法主要用于 深度研究某行为事件,以及对产品的影响以及影响程度。
针对某一具体行为,全面的描述、对比,针对其异常表象 深度下钻分析各维度、确认导致该行为数据表现的原因。如快手的播放量徒增:同期对比分析,确认历史上是否有发生过,对比 去年/上个季度/上月/上周/昨日的 数据的相对表现。多事件对比分析。对比浏览量、点赞、评论、分享事件的数据是否存在徒增。通过对比多个事件,确认徒增现象发生的范围。维度下钻:由于播放量取决于3个部门用户在快手消费视频,被监控程序上报。
所以在三个方面分析:
监控程序是否异常?在快手哪个页面的播放量增加呢?是发现、关注、还是同城?-> 对应页面做了哪些调整?是否增加了引流;哪一部分用户群的播放量增加了?交叉分析 用户自然属性(平台、性别、年龄、地域、教育学历、机型、消费能力)、行为属性(新增、回流、常活跃用户;直播用户、短视频用户…、)、视频属性(视频类型、作者类型…、)
2、留存分析
留存是衡量用户是否再次使用产品的指标,也是每一个app赖以生存的指标,能够反映任何一款产品健康度,是产品、运营、推荐效果的整体表现。如果一个app从来没有留存用户,那DAU将永远是新增用户,那么产品将无法运行下去,更别说新用户成本付诸东流。
贴合业务属性、精细化留存过程 将对留存数据更有价值和指导意义。通过留存分析,能够剖析用户留在产品的原因,从而优化产品核心功能提升留存。
留存的类型:
用户留存:用户使用app后,经过一段时间仍旧使用。功能留存:用户使用xxx功能后,经过一段时间仍旧使用该功能,且其他功能均有所变化。此时,该功能对用户留存有正向作用。先前有写过 留存分析的文章,这里就不赘述了。
3、漏斗分析
漏斗分析实质是转化分析,是通过衡量每一个转化步骤的转化率,通过转化率的异常数据找出有问题的环节并解决,进而实现优化整个流程的完成率。
在产品初期(处于与市场适配的阶段):通过漏斗分析找到用户触达的瓶颈,帮助用户触达产品核心价值,真实反映MVP与市场匹配程度;在产品中期(处于用户平稳增加的阶段): (1)通过漏斗分析优化渠道,找到目标群体用户; (2)通过漏斗分析优化用户在各模块的体验(基础的登录模块、产品核心价值模块: 如抖音的播放模块、淘宝的购买模块等);在产品后期(处于用户价值产出的阶段): (1)通过漏斗分析可以改善用户生命周期(优化用户体验提高用户生命周期,间接拉长用户群体的价值产出的时间长度,减少高价值用户群体的流失);(2)可以通过漏斗分析优化商业化模块,像商品的购买过程(购物车-提交订单的转化漏斗)、广告的曝光点击等,提高生命周期中单位时间产生的价值。
4、路径分析
路径分析可以将纷杂的app日志按照用户的使用过程,呈现出“明确的”用户现存路径。发现路径问题,进而优化,使用户尽可能短路径体验到产品核心价值。
通过路径分析,可以了解到像小明这样9点左右播放视频的用户:他们是通过push点击而来,这部分用户占比是多少;他们匆匆结束播放,再也没有下一步行为,这部分用户占比又有多少。针对他们利用碎片化时间播放视屏的场景,尤其是突然退出的'场景,是否在下一次打开app时,仍旧打开终端的视频。是否有其他策略可以针对该场景来优化?
此外,路径分析不仅仅可以用于行为路径分析,也可以用于用户群体转化分析。例如:新用户中分别转化为 忠实用户、常活跃用户、潜在流失用户、流失用户的分析。
5、用户分群分析
通过了解用户画像,可以帮助运营理解用户。根据用户画像(基本属性、用户偏好、生活习惯、用户行为等)的标签信息将用户分群。
通过用户分群行为表现对比,可以进一步了解不同群体对产品的反馈,有针对性的优化产品。
发现中 西南地区的低端机型使用app时,奔溃率特别高,开发可以针对该点进行优化、降低奔溃率;可以针对不同的用户群体的行为表现 做 定向投放、push等,从而实现精细化运营。业内的商业化行为分析产品,基本上将用户画像的生成、标签的过程均合并在用户分群的群体定义中,降低了 *** 作流程。
三、用户行为分析的完整链路
以小明为case的用户行为每天数以万/亿计的产生,如何对“这类人群”进行“行为分析”?需要行为分析将明细级别的日志聚合后再以较为可读的形式展示出来。
为了保障埋点可靠、数据上报及时、行为数据分析有效。需要一套完整的用户行为系统,包括从数据埋点设计、埋点开发、数据上报、数据模型开发、行为数据分析。 过程中也需要多方协作完成,如何保障多方协作中高效、便利的完成、产出具有业务价值的数据分析结论。后续将介绍服务于用户行为分析的相关平台介绍。
用户行为特征2一、什么是用户行为
中国有句古话“天地四方为宇,古往今来为宙”,这句话揭示了空间和时间的概念。我们要想透彻地研究任何事物,常以时间和空间两个维度来考虑。分析用户行为也不例外。
换句话说,用户行为的研究内容可以按照时间和空间维度展开。
从时间的维度来看,按照管理学大师菲利普科特勒的理论,用户的行为轨迹包括:产生需求、信息收集、方案比选、购买决策;购后行为5个阶段。其中购后行为包括使用习惯、使用体验、满意度、忠诚度等。
从空间的维度来看,用户行为的构成要素包括5W2H,例如我们要全面描述用户在购买阶段的行为,就要回答这样的问题,谁(who)?打算在什么时候(when)?什么地方(where)?买什么东西(what)?产生需求的动机是什么(why)?打算买多少(how much)?如何买(how)?同理,在使用阶段也可以从这7个要素来描述。
5阶段和7要素的结合,形成了用户行为分析的研究体系。这个体系细化了用户行为的研究内容,基于这些内容,就有了用户调查问卷的一些基本的问题。
二、为什么分析用户行为(Why)
之所以分析用户行为,是为了找到用户行为的特征,从而为企业的经营提供支持。
大家想想,用户行为具有哪些特征呢?
Q1: 用户行为是同质化的,还是差异化的?
A1:差异化的,因此用户行为具有差异性
Q2:用户行为是静态不动的,还是动态变化的?
A2:动态变化的,因此用户行为具有流动性
Q3:用户行为是相互隔绝的,还是相互影响的?
A3:相互影响的,因此用户行为具有传播性
差异性、流动性和传播性是用户行为的三个显著特征。那么,这些特征具体是如何表现的,分析这些特征对企业的经营有什么作用?
这里我们只谈差异性,后面的博文中会谈流动性和传播性。
用户行为从时间和空间的维度,分为5阶段7要素。因此用户的差异性,就表现在这5阶段和7要素上。例如,在产生需求阶段,用户的需求动机why不同。同样是买电脑,有的是为了工作、有的为了学习、有的是为了消遣;再比如,在信息收集阶段,用户的信息收集渠道where不同。同样是买房子,有的看网络广告;有的听朋友介绍;有的到现场采点。
这里只举了两个阶段,你能说出在其他阶段用户的差异性表现吗?
意识到用户的差异性,企业的营销工作就不会搞一刀切,就不会拿大炮轰蚊子,而是会进行市场细分和目标市场选择,然后针对目标用户进行精准营销。这种精准营销体现在市场定位、竞争战略选择、品牌形象和营销组合等很多方面。
三、如何分析用户行为(How)?
这里我们只谈差异性,后面的博文中会谈流动性和传播性。
我们前面谈到因为用户行为具有差异性,因此需要进行市场细分和目标市场选择,那么如何进行市场细分和目标市场选择呢?
市场细分的思路是看看从哪个维度切分市场,使所分得的细分市场内部具有的共性,细分市场之间具有个性。从哪个维度切要结合企业所处的行业特点的。例如食品市场,地域差异比较明显,南甜北咸东辣西酸,所以食品市场可按地域分;服装市场,性别差异非常突出,男款少而精;而女款多而靓,所以服装市场可按性别分。此外二八原则,也广泛用于市场细分,即我们可以按重要程度将用户分为大中小三类。重要性可以有很多评价指标,比如规模、综合实力、业内影响力、对企业的贡献率、在同类产品上的总投入等等。
将市场划分成几个细分市场后,企业就面临着目标市场选择的问题。如何选择目标市场呢?这是一个团体决策的过程,在选择目标市场时往往需要企业的管理人员和骨干营销人员坐在一起讨论来确定。讨论共有五步进行
第一步指标的选择需结合企业自身的实际情况。例如,我是大企业,规模经济是我的优势,那市场规模就是我选择的重要指标;我是中小企业,我要更关注竞争的激烈程度,因为竞争太激烈了,我可能无法存活。因此,竞争强度就是我选择的重要指标。
第二和第三步确定优先级和为指标打分的方法可参考小蚊子的《谁说菜鸟不会数据分析》中的权重确定方法
第四步的综合得分是第二步和第三步的结果加权平均得到。
第五步选择目标市场可以企业适应度和市场吸引力为横纵坐标,得出各个细分市场在四个象限中的位置。
六款免费的用户行为分析工具测评中国移动互联网市场经过几年的高速发展,增速已经明显放缓,人口红利逐渐消失。移动互联网进入了下半场,市场竞争已经从增量用户竞争逐步转化成为存量用户竞争。同时伴随流量红利消失,数据红利时代已经到来,流程驱动性公司正转变为数据驱动的数字公司,竞争从同业蔓延至异业竞争,跟随用户,跨场景地满足用户的需求将会成为数据红利时代最核心的诉求。
如果说数字化转型不可逆,那么对于用户的精细化运营将会是数字化转型的支撑点之一。要实现对用户的精细化运营,必不可少要对用户行为进行分析。比如对网站、APP等渠道的用户行为数据进行采集,对获取到的用户行为数据进行多维度、多角度对比分析,用以指导提升获客效率、优化产品服务和用户体验,以数据驱动业务持续增长。
但目前来看,距离要实现这一目标,还有一定的差距。由于日常工作中,大家的分工不同,仅关注某一个方面的数据显然不够,无法全面了解产品运营情况,更不能提出行之有效的分析建议。
现在的情况是在公司内,业务部门想要看数据,会先提出自己的数据需求,这时候需要找到技术人员或者数据分析师,根据需求写SQL将数据从库里提出来,交给数据分析师进行分析,形成对应报表之后,再发给业务部门查看,完成整个过程没个三五天搞不定,数据分析的时效性大大降低。
企业采用用户行为分析工具,可以让产品、运营、市场、数据等业务部门更方便的分析数据,让技术部门日常面对的零碎需求更少,能把等多精力放在建立数据仓库等核心工作上。
当我们在做产品开发或者产品运营时,通常需要第三方工具去做用户行为分析以提供数据支持。因此免费产品的试用成了大家在前期选择工具的必要方式。为了方便大家对目前市场上的用户分析工具有一个清晰的了解,我们在试用了大量的工具后,分别从数据接入、数据分析、安全与拓展几个方面进行了综合分析。
许多人都在问,市场上有没有免费的用户行为分析工具,答案是有的!不过各家各有特点,国外知名用户行为数据分析工具像Google Analytics(以下简称GA)、Mixpanel,国内有百度统计、易观方舟Argo、友盟、TalkingData免费版(以下简称TD免费版)。
01、数据接入
谈到数据接入,首先需要说明的是几个产品在数据模型上的差别。
GA、百度统计诞生于传统PC互联网时代,都是以传统的页面浏览(PV)和用户会话(Session)为核心。其中GA经过多年演进,增加了一些关于事件分析和自定义属性的内容,但本质上主要还是服务于页面类的产品。百度统计还是依然只支持页面和会话统计。
随着移动互联网时代到来,用户的行为触点变多,以往以页面和会话为中心所能采集到的结构化数据颗粒度不够细,页面和会话模型已经不适用了。因此,基于“用户+事件(User+Event)”模型出现了,在分析的时候可以完全自主的定义需要分析的事件,并从不同的属性维度进行交叉分析。刚推出不久的易观方舟Argo,以及Mixpanel、友盟、TalkingData免费版都采用了 “用户+事件”模型。
在埋点方面,目前根据埋点的工具和方式,可以划分为三种类型:代码埋点,可视化埋点和全埋点,并没有说哪一种方式能够碾压其他几种,因为都各有弊端,具体的各种埋点方法的分类与优缺点我们也做一下对比:
下面我们看一下市面上几家免费的数据分析产品之间在数据接入方面对比。需要注意的是由于GA、Mixpanel都是国外产品,在数据采集的规则适配了iOS、Android的设计规范,但国内开发者常常直接忽视这些设计规范开发产品,而GA、Mixpanel在数据采集上没有针对国内产品的特点进行优化,因此在数据采集的准确性上可能会受到一些影响。
另外,需要提到的一点是Mixpanel和易观方舟Argo的数据采集SDK开放了源代码,一定程度上可以打消企业在数据采集安全方面的顾虑。
02、数据分析
数据分析是用户行为分析工具的核心,除了百度统计以外,其他几款产品都可以满足用户行为数据分析的基本需求,但在功能的丰富程度上不尽相同。具体对比可以看下表。
从分析模型丰富程度上来看,Mixpanle和易观方舟Argo是里面功能最全的,堪称全家桶,唯一遗憾的是目前易观方舟Argo目前尚不支持热图分析。比如最常用的“事件分析”这个功能,不止可以从PV、UV等方面进行分析,还可以根据不同的属性值设定具体的指标按照不同的维度进行对比,功能非常强大。
从数据准确性上来看,GA在算法的严谨性上应该是最好的,但如果用户或者事件量比较大的时候,会采取抽样分析,可能会影响到数据的准确性,Mixpanel的免费版本也会存在类似的问题。易观方舟Argo在这方面表现抢眼,在数据计算上支持秒级实时数据分析、自定义指标、多维多人群指标对比、人群交叉分析、智能分析、数据实时回传、即席数据分析等。
从数据管理、项目管理、权限管理这些常用的管理功能方面来看,几款工具都提供了比较友好的支持。但仅有友盟+提供了手机app,可以随时通过手机查看监测的数据情况,易观方舟Argo支持通过手机浏览器访问查看数据看板。
另外,值得一提的是易观方舟Argo里面的用户运营和触达功能。目前易观方舟Argo可以在完成用户分析与分群后,通过邮件、短信、Push消息等方式对目标用户进行触达,还支持配置UTM追踪参数对广告进行跟踪。
03、安全与拓展性
企业级产品在数据安全性和可拓展性上,需要提前做一些考量,几款产品也各有侧重,具体对比情况如下表所示:
(点击可查看清晰大图)
GA免费版 和 Mixpanel 提供的都是SaaS服务,但因为服务器都在国外,在国内使用起来稳定性和刷新速度上可能会有一定的影响;百度统计、友盟统计、TD免费版基本上都是SaaS服务;易观方舟Argo提供安装包,可由企业自己私有部署,如果对数据安全有顾虑,易观方舟Argo是个不错的选择。在服务方面,除了GA和易观方舟Argo可提供社区服务支持以外,其他产品目前还没有完善的用户服务支持。
总结
对比来说,刚推出不久的易观方舟Argo,在数据采集、数据分析能力上,已经可以满足产品数据和用户行为数据分析的需求,而且提供了独家的一站式用户运营和用户触达。与目前其他国内的免费工具产品对比来说,易观方舟Argo在颗粒度细致程度、分析模型全面性、系统性能方面表现优秀。
目的,大多数成长型团队、创业团队的市场及运营预算都相对紧张,每一分投出去的钱恨不得立马知道什么时候能转化回来,如果自己搭建一套完整的数据分析平台要花费的功夫肯定不少。相信更多性能全面的用户分析和运营分析工具的免费开放,能避免企业在市场运营方面走弯路;也能解放团队更专注的在业务上,通过用户行为分析提升营销效率、优化迭代产品、留住更多用户,真正用数据指导和驱动业务。
最后,这次选型过程中,在易观方舟Argo社区交流感受较好,现在市面上能见到的免费工具产品不少,但真正形成自己技术服务社区的不多。相信未来他们能把这个社区做的更好,就像当年小米运营MIUI做社区一样,能给广大的技术宅和数据爱好者提供一个炫技、PK、互助的圈子。
以上就是关于同程旅行用户数据怎么看全部的内容,包括:同程旅行用户数据怎么看、移动端用户行为分析抓取哪些数据、大数据项目之电商数仓(用户行为数据采集)(一)等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)