传祺前向雷达标定方法

传祺前向雷达标定方法,第1张

传祺前向雷达标定方法是一种用于标定前向雷达的方法,它可以帮助汽车制造商确定前向雷达的性能特性。该方法首先要求汽车制造商在室内或室外设置一个标定框架,然后放置一个前向雷达,并安装一台激光扫描仪,用于测量雷达的距离和角度。接着,激光扫描仪会精确地测量雷达的距离和角度,并将这些数据输入到一个软件程序中,以确定雷达的特性。最后,汽车制造商可以根据测试结果调整雷达的性能,以确保它能够准确地检测到前方的物体。

雷达系统中采用的脉冲信号难以定性分析,这是因为脉冲宽度和脉冲重复频率不是常数,并在很大程度上依赖于雷达的模式,其有力地阻止了采用射频功率计作为工具,通过平均功率来计算脉冲信号的峰值功率。此外,必须测量许多参数才能有效地表征脉冲信号,包括峰值和平均功率、脉冲波形及脉冲外形,其中包括了上升时间、下降时间、脉冲宽度和脉冲周期。其他测量包括载波频率、占用频谱、载波占空比、脉冲重复频率和相位噪声。频谱分析仪为工程师提供了测量脉冲宽度、峰值功率、相位噪声,以及许多其他重要参数的最佳解决方案。考察脉冲信号 脉冲信号包含了很多跨越广泛频率范围的频谱线(图1)。结果可有三种显示方式,这有赖于脉冲和分辨带宽(RBW)等参数。如果RBW小于频谱线间距,改变它不会改变其测量水平。带宽窄于包络中第一个无效间距(1/脉冲宽度)就可以显示包络频谱。最后,如果带宽宽于无效间距,带宽内的整个频谱下降,这意味着该信号的频谱无法显示。随着带宽的进一步增加,响应接近脉冲的时域函数。依靠脉冲参数,还可以计算出脉冲降敏因子,这减少了频谱分析仪脉冲带宽内的测量水平。在这种情况下,标记读数加上降敏因子等于峰值功率。 RBW值对脉冲信号的测量很重要,这是因为在测量水平上RBW的改变产生变化。脉冲降敏因子取决于脉冲参数和RBW,如果带宽大于频谱线的间距,所测得的幅度依赖于带宽和总信号带宽内的频谱线数目。仪器中的滤波器形状决定着RBW校正因子,这是因为带宽的形状反映了滤波器带宽内的功率。如果RBW太宽,频谱线或包络频谱变成时域谱,并且RBW滤波器的脉冲响应变得很明显。 在时域使用频谱分析仪,就有可能获得脉冲宽度的直接测量。峰值标记允许峰值功率的测量,而增量标记允许参数的测量,例如上升时间、下降时间、脉冲重复间隔及过冲。通过宽RBW和视频带宽(VBW),频谱分析仪可以追踪射频脉冲的包络,以便可以看到脉冲的冲击响应。最高RBW/VBW限制了频谱分析仪测量窄脉冲的能力,并且通用规则长期以来一直认为最短的脉冲是可测的,其脉冲宽度应大于或等于2/RBW 。 雷达系统通常在射频脉冲内采用调制。了解这种调制的功率特性很重要,这是因为雷达范围受到脉冲内可获得功率的限制。反过来说,更长的脉冲长度将导致有限的分辨率。调制制式可能的范围从简单的FM(调频)到复杂的数字调制制式,其可以支持现代频谱分析仪。频谱分析仪也可以测量传统的模拟调制脉冲(AM、FM、相位调制) 。此外,其还可以执行分析功能,这涉及许多数字调制制式的解调制,如射频脉冲内的巴克码BPSK调制、脉冲到脉冲的相位测量等。 脉冲功率测量和探测器 在雷达发射机中,测试输出功率是一个重要的测量,并且可以采用几种不同类型的测量。平均功率通常采用功率计作为均值功率测量。另一个重要的值是峰值功率,且如果脉冲重复频率(PRF)和脉冲宽度已知,就可以计算出所测到的平均功率。 在频谱分析仪上采用光栅扫描CRT显示器(或LCD)来显示时域信号波形。这些显示器中的象素数目,在振幅轴以及在时间(或频率)轴是有限的。这导致幅度和频率或时间的有限分辨率。为了显示扫描到的全部测量数据,探测器被用来将数据采样压缩到显示像素许可的数量。 对于峰值功率的测量,频谱分析仪具有峰值检测器,其可以显示某个给定测量区间内的最高功率峰值。然而,对于调幅信号的平均功耗测量,如脉冲调制信号,频谱分析仪中的峰值探测器是不适合的,这是因为峰值电压与信号功率无关。然而,这些仪器也提供了抽样探测器或rms探测器。 抽样探测器每个测量点检查包络电压一次,并显示结果,但这可能引起信号信息的总损耗,这是因为可在屏幕x轴上获得的像素数量是有限的。rms探测器在ADC的全采样率下采样包络信号,并且单个像素范围内的所有采样被用于rms功率的计算。因此,rns探测器显示了比抽样检测器更多的测量样本。 通过将功率计算公式用于所有样本,每个像素都代表了rms探测器测量的频谱功率。对于高重复性,可以通过扫描时间来控制每个象素的样本数量。越长的扫描时间,时间间隔上每个像素的功率积分也随之增加。在脉冲信号下,可重复性依赖于像素内的脉冲数量。对平滑部分,稳定的rms追踪结果,扫描时间必须设为足够长的值,以便在一个像素内捕捉几个脉冲。rms探测器计算所有样本的rms值,这由屏幕上的一个单一像素来线性地代表。 为了精确测量脉冲调制信号的峰值和均值功率,该仪器的IF带宽和ADC转换器的采样率必须足够高,以便其不会影响脉冲的形状。例如,罗德与施瓦茨(R&S)公司的FSP频谱分析仪中可以获得10MHz分辨带宽和32MHz采样率,在脉冲宽度窄至500ns的高精度下测量脉冲调制信号是可能的。 测试设备实例 对本文中的测量例子,R&S SMU信号发生器被用于创建模拟雷达信号,并且输出信号是AM调制射频载波。利用任意波形发生器来产生宽带AM调制,以创建一个具有500 ns脉冲宽度和1kHz PRF的脉冲序列。脉冲水平随时间变化,来模拟长期平均功率测量的天线旋转效果。 对于测量峰值功率,频谱分析仪必须设为足够宽的RBW和VBW以便在脉冲宽度内稳定。在这种测量中,RBW和VBW设为10MHz。频谱分析仪设到零跨度,并显示功率随时间的变化。扫描时间设为允许探测单一脉冲的值。频谱分析仪采用视频触发来显示稳定的脉冲形状显示。脉冲宽度被改变,并且采用100ns、200ns和500ns的脉冲宽度来绘制三个测量结果,从而研究分辨滤波器稳定时间带来的影响。典型峰值功率测量的三个结果如图2所示。 蓝色虚线是采用500 ns脉冲宽度测量的,并在脉冲顶部显示出一个平坦响应。绿色虚线是采用200 ns脉冲宽度测量的。此值等于计算得到的稳定时间。该测量中的峰值水平刚刚达到500 ns脉冲的实测值。标记1(T2)被设为峰值,显示为997dBm。该脉冲宽度是10MHz分辨带宽下可以准确测量的最小值。红色实线是采用100ns脉冲宽度测得的,其短于分解滤波器的稳定时间。在该图中,增量标记读数“Delta 2 (T3)”设定为峰值,并显示出对归一化脉冲水平大约3dB的损耗。很专业的问题,希望能帮到你。

雷达是20世纪人类在电子工程领域的一项重大发明。雷达的出现为人类在许多领域引入了现代科技的手段。

1935年2月25日,英国人为了防御敌机对本土的攻击,开始了第一次实用雷达实验。当时使用的媒体是由BBC广播站发射的50米波长的常规无线电波,在一个事先装有接收设备的货车里,科研人员在显示器上看到了由飞机反射回来的无线电信号的回波,于是雷达产生了。

雷达是利用极短的无线电波进行探测的,雷达的组成部分有发射机、天线、接收机和显示器等。由于无线电波传播时,遇到障碍物就能反射回来,雷达就根据这个原理把无线电波发射出去,再用接收装置接收反射回来的无线电波,这样就可以测定目标的方向、距离、高度等。最初雷达主要用于军事。第二次世界大战期间,英国在海岸线上建起了雷达防御网络。这些早期的雷达使英国人能够不断地成功抗击德军破坏性的空中和海底袭击。

雷达被人们称为千里眼。在现代战争中,由于雷达技术的进步,使交战双方在相距几十公里,甚至上百公里,人还互相看不到,就已拉开了空战序幕,这就是现代空战利用雷达的一个特点――超视距空战。

由于雷达自身的工作原理,造成了雷达在使用中存在有捕捉对象的盲区,这也就有了在战争中利用雷达盲区偷袭成功的战例。现代战争中,为了躲避雷达的监视,美国生产出了一种隐形轰炸机,它可以有效驱散雷达信号,使它对于常规的雷达系统保持隐形。正是由于这种矛与盾的关系,科学家在这个领域不断探索研制分辨能力更高的雷达。

随着雷达技术的不断改进,如今雷达被广泛用于民航管制、地形测量、气象、航海等众多领域。面对日益拥挤的天空,拥有精密的雷达监测系统至关重要。使用雷达设备可不受天气的影响,不分昼夜进行监测。民航管制员通过雷达直接获取飞机的位置、高度、航行轨迹等信息,及时调节飞行方位和高度。在雷达的使用科学原理中,雷达与目标之间有相地运动,回波信号的频率有多普勒频移,根据多普勒效应的原理可以求得其相对速度。这也是交通警在公路上测量汽车速度的测速雷达工作的原理。

我国在雷达技术方面发展很快,取得了很大成就。探地雷达就是我国研制的,它可适用于不同深度的地下探测。目前,探地雷达已经广泛应用于国防、城市建设、水利、考古等领域。中科院电子所研制成功了星载合成孔径雷达模拟样机,并对1998年长江中下游特大洪涝灾害进行了监测,获取了受灾地区的图像,为抗洪救灾提供了准确的灾情数据。随着高科技的不断发展,雷达技

蝙蝠是利用“超声波”在夜间导航的。蝙蝠的喉头发出一种超过人的耳朵所能听到的高频声波,这种声波沿着直线传播,一碰到物体就迅速返回来,蝙蝠用耳朵接收了这种返回来的超声波,使其能作出准确的判断,引导蝙蝠飞行。

而雷达正是运用了这一特性,科学家借助仿生原理,人类根据蝙蝠的回声定位系统制造出了雷达。

蝙蝠中的多数还具有敏锐的听觉定向(或回声定位)系统,可以通过喉咙发出超声波然后再依据超声波回应来辨别方向、探测目标的。有一些种类的面部进化出特殊的增加声纳接收的结构,如鼻叶、脸上多褶皱和复杂的大耳朵。

雷达,为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。

1、任务需求:作战雷达在不同任务的执行中有着不同的选择要求,需要根据任务需求来进行雷达选择,例如要求探测距离、探测角度、分辨率等等。

2、航空器选择:不同航空器有着不同的雷达选择要求,需要根据航空器的特性来进行合适的雷达选择。

3、雷达技术:雷达技术的发展使得不同类型的雷达在性能、精度、稳定性等方面有所不同,需要根据雷达技术进行合适的选择。

超宽带雷达公路传播特性主要包括以下几个方面:

1信号传播距离:超宽带雷达信号的传播距离受到多种因素的影响,比如天气、地形、建筑等。包括雨水、大气湿度、电磁辐射等因素都会对信号的传播产生一定程度的干扰和折射,并且随着距离的增加信号的强度会逐渐降低。

2信号传输速率:超宽带雷达信号具有高速传输的特点。与传统雷达相比,其传输速率更快、能够处理更多的数据,同时还能够识别出更小的目标。

3天线功率和方向性:超宽带雷达所使用的天线功率不大,而且产生的电磁波十分弱化,因此不能与其它电磁源竞争。另外,超宽带雷达天线具有指向性,能够根据需要在空间中选择发射方向。

4信道传输情况:超宽带雷达利用的是多径反射路径来传播。由于反射路径非常复杂,因此可能导致多条同步波进入接收机,这对于信号处理提出了更高的要求。

5频段问题:超宽带雷达的工作频带非常宽,因此不容易被干扰。但同时,由于其工作频段涵盖范围很广,因此低频和高频会出现信号强度降低的问题。

总之,超宽带雷达在公路传播时需要考虑到天气、地形、建筑等多种因素的影响,同时需要保证信号传输速率和精度,以便更加准确高效地检测和识别交通目标。

雷达信号和振动信号的区别是物理特性和应用领域不同。

1、物理特性:雷达信号是一种电磁波信号,具有高速传播、穿透力强等特点。而振动信号则是一种机械波信号,传播速度较慢,具有反射、折射等特点。

2、应用领域:雷达信号主要应用于雷达测距、导航、目标识别和追踪等领域。而振动信号则主要应用于结构健康监测、机械故障诊断等领域。

雷达侦察脉内分析是对雷达侦察信号进行的一种重要的分析方法。其基本思想是通过对雷达接收到的脉冲信号的波形和特征进行深入分析,以获取目标的更多信息,从而提高雷的探测性能和识别能力。脉内分析技术被广泛应用于雷达侦察、目标识别、电子情报和无线电侦察等领域。

脉内分析技术可以实现以下几方面的意义:

1识别目标:与其他信号方法相比,脉内分析具有更高的目标识别能力。通过分析脉冲信号的频谱、相位、调制方式、宽度和重复周期等参数,可以确定目标的距离、速度、方位、尺寸等特征信息,并且识别并判定多个目标之间的相互关系。

2提高探测能力:利用脉内分析技术,可以有效地消除杂波和干扰信号,提高雷达探测器的敏感性和探测距离,大幅度提高雷达系统的抗干扰能力和探测效。

3获取电子情报:脉内分析技术可以从雷达信号中提取出对敌目标类型、技术参数等关键信息,为侦察和情报工作提供有力的支持。

综上所述,脉内分析技术对于雷达侦察应用具重要的意义,不仅可以提高雷达系统的探测性能和识别能力,而且可以实现更加有效的目标搜索、跟踪和战术指挥。

以上就是关于传祺前向雷达标定方法全部的内容,包括:传祺前向雷达标定方法、雷达脉冲信号怎样分析怎么确定是属于那种雷达信号、雷达的相关知识等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/10111144.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存