参考Swift 官方教程《The Swift Programming Language》中文版
扩展(Extensions)
扩展就是向一个已有的类、结构体或枚举类型添加新功能(functionality)。这包括在没有权限获取原始源代码的情况下扩展类型的能力(即逆向建模)。扩展和 Objective-C 中的分类(categorIEs)类似。(不过与Objective-C不同的是,Swift 的扩展没有名字。)
Swift 中的扩展可以:
添加计算型属性和计算静态属性 定义实例方法和类型方法 提供新的构造器 定义下标 定义和使用新的嵌套类型 使一个已有类型符合某个协议扩展语法(Extension Syntax)注意:
如果你定义了一个扩展向一个已有类型添加新功能,那么这个新功能对该类型的所有已有实例中都是可用的,即使它们是在你的这个扩展的前面定义的。
声明一个扩展使用关键字extension
:
extension SomeType { // 加到SomeType的新功能写到这里}
一个扩展可以扩展一个已有类型,使其能够适配一个或多个协议(protocol)。当这种情况发生时,协议的名字应该完全按照类或结构体的名字的方式进行书写:
extension SomeType: SomeProtocol,AnotherProctocol { // 协议实现写到这里}
按照这种方式添加的协议遵循者(protocol conformance)被称之为在扩展中添加协议遵循者
计算型属性(Computed PropertIEs)扩展可以向已有类型添加计算型实例属性和计算型类型属性。下面的例子向 Swift 的内建Double
类型添加了5个计算型实例属性,从而提供与距离单位协作的基本支持。
extension Double { var km: Double { return self * 1_000.0 } var m : Double { return self } var cm: Double { return self / 100.0 } var mm: Double { return self / 1_000.0 } var ft: Double { return self / 3.28084 }}let oneInch = 25.4.mmprintln("One inch is \(oneInch) meters")// 打印输出:"One inch is 0.0254 meters"let threeFeet = 3.ftprintln("Three feet is \(threeFeet) meters")// 打印输出:"Three feet is 0.914399970739201 meters"
这些计算属性表达的含义是把一个Double
型的值看作是某单位下的长度值。即使它们被实现为计算型属性,但这些属性仍可以接一个带有dot语法的浮点型字面值,而这恰恰是使用这些浮点型字面量实现距离转换的方式。
在上述例子中,一个Double
型的值1.0
被用来表示“1米”。这就是为什么m
计算型属性返回self
——表达式1.m
被认为是计算1.0
的Double
值。
其它单位则需要一些转换来表示在米下测量的值。1千米等于1,000米,所以km
计算型属性要把值乘以1_000.00
来转化成单位米下的数值。类似地,1米有3.28024英尺,所以ft
计算型属性要把对应的Double
值除以3.28024
来实现英尺到米的单位换算。
这些属性是只读的计算型属性,所有从简考虑它们不用get
关键字表示。它们的返回值是Double
型,而且可以用于所有接受Double
的数学计算中:
let aMarathon = 42.km + 195.mprintln("A marathon is \(aMarathon) meters long")// 打印输出:"A marathon is 42195.0 meters long"
构造器(Initializers)注意:
扩展可以添加新的计算属性,但是不可以添加存储属性,也不可以向已有属性添加属性观测器(property observers)。
扩展可以向已有类型添加新的构造器。这可以让你扩展其它类型,将你自己的定制类型作为构造器参数,或者提供该类型的原始实现中没有包含的额外初始化选项。
扩展能向类中添加新的便利构造器,但是它们不能向类中添加新的指定构造器或析构函数。指定构造器和析构函数必须总是由原始的类实现来提供。
注意:
如果你使用扩展向一个值类型添加一个构造器,在该值类型已经向所有的存储属性提供默认值,而且没有定义任何定制构造器(custom initializers)时,你可以在值类型的扩展构造器中调用默认构造器(default initializers)和逐一成员构造器(memberwise initializers)。正如在值类型的构造器代理中描述的,如果你已经把构造器写成值类型原始实现的一部分,上述规则不再适用。
下面的例子定义了一个用于描述几何矩形的定制结构体Rect
。这个例子同时定义了两个辅助结构体Size
和Point
,它们都把0.0
作为所有属性的默认值:
struct Size { var wIDth = 0.0,height = 0.0}struct Point { var x = 0.0,y = 0.0}struct Rect { var origin = Point() var size = Size()}
因为结构体Rect
提供了其所有属性的默认值,所以正如默认构造器中描述的,它可以自动接受一个默认的构造器和一个成员级构造器。这些构造器可以用于构造新的Rect
实例:
let defaultRect = Rect()let memberwiseRect = Rect(origin: Point(x: 2.0,y: 2.0),size: Size(wIDth: 5.0,height: 5.0))
你可以提供一个额外的使用特殊中心点和大小的构造器来扩展Rect
结构体:
extension Rect { init(center: Point,size: Size) { let originX = center.x - (size.wIDth / 2) let originY = center.y - (size.height / 2) self.init(origin: Point(x: originX,y: originY),size: size) }}
这个新的构造器首先根据提供的center
和size
值计算一个合适的原点。然后调用该结构体自动的成员构造器init(origin:size:)
,该构造器将新的原点和大小存到了合适的属性中:
let centerRect = Rect(center: Point(x: 4.0,y: 4.0),size: Size(wIDth: 3.0,height: 3.0))// centerRect的原点是 (2.5,2.5),大小是 (3.0,3.0)
方法(Methods)注意:
如果你使用扩展提供了一个新的构造器,你依旧有责任保证构造过程能够让所有实例完全初始化。
扩展可以向已有类型添加新的实例方法和类型方法。下面的例子向Int
类型添加一个名为repetitions
的新实例方法:
extension Int { func repetitions(task: () -> ()) { for i in 0..<self { task() } }}
这个repetitions
方法使用了一个() -> ()
类型的单参数(single argument),表明函数没有参数而且没有返回值。
定义该扩展之后,你就可以对任意整数调用repetitions
方法,实现的功能则是多次执行某任务:
3.repetitions({ println("Hello!") })// Hello!// Hello!// Hello!
可以使用 trailing 闭包使调用更加简洁:
3.repetitions{ println("Goodbye!")}// Goodbye!// Goodbye!// Goodbye!修改实例方法(Mutating Instance Methods)
通过扩展添加的实例方法也可以修改该实例本身。结构体和枚举类型中修改self
或其属性的方法必须将该实例方法标注为mutating
,正如来自原始实现的修改方法一样。
下面的例子向Swift的Int
类型添加了一个新的名为square
的修改方法,来实现一个原始值的平方计算:
extension Int { mutating func square() { self = self * self }}var someInt = 3someInt.square()// someInt 现在值是 9下标(Subscripts)
扩展可以向一个已有类型添加新下标。这个例子向Swift内建类型Int
添加了一个整型下标。该下标[n]
返回十进制数字从右向左数的第n个数字
...等等
extension Int { subscript(var digitIndex: Int) -> Int { var decimalBase = 1 while digitIndex > 0 { decimalBase *= 10 --digitIndex } return (self / decimalBase) % 10 }}746381295[0]// returns 5746381295[1]// returns 9746381295[2]// returns 2746381295[8]// returns 7
如果该Int
值没有足够的位数,即下标越界,那么上述实现的下标会返回0,因为它会在数字左边自动补0:
746381295[9]//returns 0,即等同于:0746381295[9]嵌套类型(nested Types)
扩展可以向已有的类、结构体和枚举添加新的嵌套类型:
extension Character { enum Kind { case Vowel,Consonant,Other } var kind: Kind { switch String(self).lowercaseString { case "a","e","i","o","u": return .Vowel case "b","c","d","f","g","h","j","k","l","m","n","p","q","r","s","t","v","w","x","y","z": return .Consonant default: return .Other } }}
该例子向Character
添加了新的嵌套枚举。这个名为Kind
的枚举表示特定字符的类型。具体来说,就是表示一个标准的拉丁脚本中的字符是元音还是辅音(不考虑口语和地方变种),或者是其它类型。
这个例子还向Character
添加了一个新的计算实例属性,即kind
,用来返回合适的Kind
枚举成员。
现在,这个嵌套枚举可以和一个Character
值联合使用了:
func printLetterKinds(word: String) { println("'\(word)' is made up of the following kinds of letters:") for character in word { switch character.kind { case .Vowel: print("vowel ") case .Consonant: print("consonant ") case .Other: print("other ") } } print("\n")}printLetterKinds("Hello")// 'Hello' is made up of the following kinds of letters:// consonant vowel consonant consonant vowel
函数printLetterKinds
的输入是一个String
值并对其字符进行迭代。在每次迭代过程中,考虑当前字符的kind
计算属性,并打印出合适的类别描述。所以printLetterKinds
就可以用来打印一个完整单词中所有字母的类型,正如上述单词"hello"
所展示的。
总结注意:
由于已知character.kind
是Character.Kind
型,所以Character.Kind
中的所有成员值都可以使用switch
语句里的形式简写,比如使用.Vowel
代替Character.Kind.Vowel
以上是内存溢出为你收集整理的Swift学习:2.20 扩展全部内容,希望文章能够帮你解决Swift学习:2.20 扩展所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)