本文对原文:android实现计步功能初探,计步项目进行了精简,移除了进程服务和计时、守护进程、数据库保存等等,方便扩展功能。
本文源码:https://github.com/lifegh/StepOrient
AndroID4.4以上版本,有些手机有计步传感器可以直接使用,
而有些手机没有,但有加速度传感器,也可以实现计步功能(需要计算加速度波峰波谷来判断人走一步)!
一.调用
public class MainActivity extends AppCompatActivity implements StepSensorBase.StepCallBack{ ......... @OverrIDe public voID Step(int stepNum) { // 计步回调 stepText.setText("步数:" + stepNum); } @OverrIDe protected voID onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentVIEw(R.layout.activity_main); stepText = (TextVIEw) findVIEwByID(R.ID.step_text); // 开启计步监听,分为加速度传感器、或计步传感器 stepSensor = new StepSensorpedometer(this,this); if (!stepSensor.registerStep()) { Toast.makeText(this,"计步传传感器不可用!",Toast.LENGTH_SHORT).show(); stepSensor = new StepSensoracceleration(this,this); if (!stepSensor.registerStep()) { Toast.makeText(this,"加速度传感器不可用!",Toast.LENGTH_SHORT).show(); } } } ....... } /** * 计步传感器抽象类,子类分为加速度传感器、或计步传感器 */public abstract class StepSensorBase implements SensorEventListener { private Context context; protected StepCallBack stepCallBack; protected SensorManager sensorManager; protected static int CURRENT_SETP = 0; protected boolean isAvailable = false; public StepSensorBase(Context context,StepCallBack stepCallBack) { this.context = context; this.stepCallBack = stepCallBack; } public interface StepCallBack { /** * 计步回调 */ voID Step(int stepNum); } /** * 开启计步 */ public boolean registerStep() { if (sensorManager != null) { sensorManager.unregisterListener(this); sensorManager = null; } sensorManager = SensorUtil.getInstance().getSensorManager(context); registerStepListener(); return isAvailable; } /** * 注册计步监听器 */ protected abstract voID registerStepListener(); /** * 注销计步监听器 */ public abstract voID unregisterStep();}
二.直接使用计步传感器实现计步
/** * 计步传感器 */public class StepSensorpedometer extends StepSensorBase { private final String TAG = "StepSensorpedometer"; private int lastStep = -1; private int liveStep = 0; private int increment = 0; private int sensorMode = 0; // 计步传感器类型 public StepSensorpedometer(Context context,StepCallBack stepCallBack) { super(context,stepCallBack); } @OverrIDe protected voID registerStepListener() { Sensor detectorSensor = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_DETECTOR); Sensor countSensor = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER); if (sensorManager.registerListener(this,detectorSensor,SensorManager.SENSOR_DELAY_GAME)) { isAvailable = true; sensorMode = 0; Log.i(TAG,"计步传感器Detector可用!"); } else if (sensorManager.registerListener(this,countSensor,SensorManager.SENSOR_DELAY_GAME)) { isAvailable = true; sensorMode = 1; Log.i(TAG,"计步传感器Counter可用!"); } else { isAvailable = false; Log.i(TAG,"计步传感器不可用!"); } } @OverrIDe public voID unregisterStep() { sensorManager.unregisterListener(this); } @OverrIDe public voID onSensorChanged(SensorEvent event) { liveStep = (int) event.values[0]; if (sensorMode == 0) { Log.i(TAG,"Detector步数:"+liveStep); StepSensorBase.CURRENT_SETP += liveStep; } else if (sensorMode == 1) { Log.i(TAG,"Counter步数:"+liveStep); StepSensorBase.CURRENT_SETP = liveStep; } stepCallBack.Step(StepSensorBase.CURRENT_SETP); } @OverrIDe public voID onAccuracyChanged(Sensor sensor,int accuracy) { }}
三.使用加速度传感器实现计步
/** * 加速度传感器 */public class StepSensoracceleration extends StepSensorBase { private final String TAG = "StepSensoracceleration"; //存放三轴数据 final int valueNum = 5; //用于存放计算阈值的波峰波谷差值 float[] tempValue = new float[valueNum]; int tempCount = 0; //是否上升的标志位 boolean isDirectionUp = false; //持续上升次数 int continueUpCount = 0; //上一点的持续上升的次数,为了记录波峰的上升次数 int continueUpFormerCount = 0; //上一点的状态,上升还是下降 boolean lastStatus = false; //波峰值 float peakOfWave = 0; //波谷值 float valleyOfWave = 0; //此次波峰的时间 long timeOfThisPeak = 0; //上次波峰的时间 long timeOfLastPeak = 0; //当前的时间 long timeOfNow = 0; //当前传感器的值 float gravityNew = 0; //上次传感器的值 float gravityold = 0; //动态阈值需要动态的数据,这个值用于这些动态数据的阈值 final float initialValue = (float) 1.7; //初始阈值 float ThreadValue = (float) 2.0; //初始范围 float minValue = 11f; float maxValue = 19.6f; /** * 0-准备计时 1-计时中 2-正常计步中 */ private int CountTimeState = 0; public static int TEMP_STEP = 0; private int lastStep = -1; //用x、y、z轴三个维度算出的平均值 public static float average = 0; private Timer timer; // 倒计时3.5秒,3.5秒内不会显示计步,用于屏蔽细微波动 private long duration = 3500; private TimeCount time; public StepSensoracceleration(Context context,stepCallBack); } @OverrIDe protected voID registerStepListener() { // 注册加速度传感器 isAvailable = sensorManager.registerListener(this,sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),SensorManager.SENSOR_DELAY_GAME); if (isAvailable) { Log.i(TAG,"加速度传感器可用!"); } else { Log.i(TAG,"加速度传感器不可用!"); } } @OverrIDe public voID unregisterStep() { sensorManager.unregisterListener(this); } public voID onAccuracyChanged(Sensor arg0,int arg1) { } public voID onSensorChanged(SensorEvent event) { Sensor sensor = event.sensor; synchronized (this) { if (sensor.getType() == Sensor.TYPE_ACCELEROMETER) { calc_step(event); } } } synchronized private voID calc_step(SensorEvent event) { average = (float) Math.sqrt(Math.pow(event.values[0],2) + Math.pow(event.values[1],2) + Math.pow(event.values[2],2)); detectorNewStep(average); } /* * 检测步子,并开始计步 * 1.传入sersor中的数据 * 2.如果检测到了波峰,并且符合时间差以及阈值的条件,则判定为1步 * 3.符合时间差条件,波峰波谷差值大于initialValue,则将该差值纳入阈值的计算中 * */ public voID detectorNewStep(float values) { if (gravityold == 0) { gravityold = values; } else { if (DetectorPeak(values,gravityold)) { timeOfLastPeak = timeOfThisPeak; timeOfNow = System.currentTimeMillis(); if (timeOfNow - timeOfLastPeak >= 200 && (peakOfWave - valleyOfWave >= ThreadValue) && (timeOfNow - timeOfLastPeak) <= 2000) { timeOfThisPeak = timeOfNow; //更新界面的处理,不涉及到算法 preStep(); } if (timeOfNow - timeOfLastPeak >= 200 && (peakOfWave - valleyOfWave >= initialValue)) { timeOfThisPeak = timeOfNow; ThreadValue = Peak_Valley_Thread(peakOfWave - valleyOfWave); } } } gravityold = values; } private voID preStep() {// if (CountTimeState == 0) {// // 开启计时器// time = new TimeCount(duration,700);// time.start();// CountTimeState = 1;// Log.v(TAG,"开启计时器");// } else if (CountTimeState == 1) {// TEMP_STEP++;// Log.v(TAG,"计步中 TEMP_STEP:" + TEMP_STEP);// } else if (CountTimeState == 2) { StepSensorBase.CURRENT_SETP++;// if (stepCallBack != null) { stepCallBack.Step(StepSensorBase.CURRENT_SETP);// }// } } /* * 检测波峰 * 以下四个条件判断为波峰: * 1.目前点为下降的趋势:isDirectionUp为false * 2.之前的点为上升的趋势:lastStatus为true * 3.到波峰为止,持续上升大于等于2次 * 4.波峰值大于1.2g,小于2g * 记录波谷值 * 1.观察波形图,可以发现在出现步子的地方,波谷的下一个就是波峰,有比较明显的特征以及差值 * 2.所以要记录每次的波谷值,为了和下次的波峰做对比 * */ public boolean DetectorPeak(float newValue,float oldValue) { lastStatus = isDirectionUp; if (newValue >= oldValue) { isDirectionUp = true; continueUpCount++; } else { continueUpFormerCount = continueUpCount; continueUpCount = 0; isDirectionUp = false; }// Log.v(TAG,"oldValue:" + oldValue); if (!isDirectionUp && lastStatus && (continueUpFormerCount >= 2 && (oldValue >= minValue && oldValue < maxValue))) { peakOfWave = oldValue; return true; } else if (!lastStatus && isDirectionUp) { valleyOfWave = oldValue; return false; } else { return false; } } /* * 阈值的计算 * 1.通过波峰波谷的差值计算阈值 * 2.记录4个值,存入tempValue[]数组中 * 3.在将数组传入函数averageValue中计算阈值 * */ public float Peak_Valley_Thread(float value) { float tempThread = ThreadValue; if (tempCount < valueNum) { tempValue[tempCount] = value; tempCount++; } else { tempThread = averageValue(tempValue,valueNum); for (int i = 1; i < valueNum; i++) { tempValue[i - 1] = tempValue[i]; } tempValue[valueNum - 1] = value; } return tempThread; } /* * 梯度化阈值 * 1.计算数组的均值 * 2.通过均值将阈值梯度化在一个范围里 * */ public float averageValue(float value[],int n) { float ave = 0; for (int i = 0; i < n; i++) { ave += value[i]; } ave = ave / valueNum; if (ave >= 8) {// Log.v(TAG,"超过8"); ave = (float) 4.3; } else if (ave >= 7 && ave < 8) {// Log.v(TAG,"7-8"); ave = (float) 3.3; } else if (ave >= 4 && ave < 7) {// Log.v(TAG,"4-7"); ave = (float) 2.3; } else if (ave >= 3 && ave < 4) {// Log.v(TAG,"3-4"); ave = (float) 2.0; } else {// Log.v(TAG,"else"); ave = (float) 1.7; } return ave; } class TimeCount extends CountDownTimer { public TimeCount(long millisInFuture,long countDownInterval) { super(millisInFuture,countDownInterval); } @OverrIDe public voID onFinish() { // 如果计时器正常结束,则开始计步 time.cancel(); StepSensorBase.CURRENT_SETP += TEMP_STEP; lastStep = -1; Log.v(TAG,"计时正常结束"); timer = new Timer(true); TimerTask task = new TimerTask() { public voID run() { if (lastStep == StepSensorBase.CURRENT_SETP) { timer.cancel(); CountTimeState = 0; lastStep = -1; TEMP_STEP = 0; Log.v(TAG,"停止计步:" + StepSensorBase.CURRENT_SETP); } else { lastStep = StepSensorBase.CURRENT_SETP; } } }; timer.schedule(task,2000); CountTimeState = 2; } @OverrIDe public voID onTick(long millisUntilFinished) { if (lastStep == TEMP_STEP) { Log.v(TAG,"onTick 计时停止:" + TEMP_STEP); time.cancel(); CountTimeState = 0; lastStep = -1; TEMP_STEP = 0; } else { lastStep = TEMP_STEP; } } }}
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。
您可能感兴趣的文章:android实现计步功能初探Android计步模块实例代码(类似微信运动)Android实现简易计步器功能隔天步数清零查看历史运动纪录Android计步功能的实现代码Android实现计步进度的环形Progress超精准的Android手机计步器开发 总结以上是内存溢出为你收集整理的Android实现计步传感器功能全部内容,希望文章能够帮你解决Android实现计步传感器功能所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)