Handler、Message、Loopler、MessageQueen
首先看一下我们平常使用Handler的一个最常见用法。
Handler handler =new Handler(){ @OverrIDe public voID handleMessage(Message msg) { super.handleMessage(msg); //这里进行一些UI *** 作等处理 } new Thread(new Runnable() { @OverrIDe public voID run() { Message message = Message.obtain(); ........ handler.sendMessage(message); } }); };
看一下handler的构造函数的源码
public Handler() { this(null,false);}//他会调用本类中的如下构造函数public Handler(Callback callback,boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifIErs() & ModifIEr.STATIC) == 0) { Log.w(TAG,"The following Handler class should be static or leaks might occur: " + klass.getCanonicalname()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler insIDe thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
看到当mLooper == null时会抛一个“Can't create handler insIDe thread that has not called Looper.prepare()”这个异常,所以我们在创建handler实例前首先需要调用Looper.prepare()
public static voID prepare() { prepare(true);}//将looper保存到ThreadLocal中,这里可以把ThreadLocal理解为一个以当前线程为键的Map,所以一个线程中只会有一个looperprivate static voID prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed));}//我们看到在new Looper(quitAllowed)中,创建了一个消息队列MessageQueenprivate Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread();}
接下来我们看handler.sendMessage(message)这个方法,从字面意思就是将信息发送出去。一般sendMessage累的方法最终都会调用sendMessageAtTime(Message msg,long uptimeMillis)这个方法
public boolean sendMessageAtTime(Message msg,long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper",e.getMessage(),e); return false; } return enqueueMessage(queue,msg,uptimeMillis); }
我们看到最终会执行enqueueMessage(queue,uptimeMillis)这个方法
private boolean enqueueMessage(MessageQueue queue,Message msg,long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg,uptimeMillis); }
最终又会调用MessageQueen中的queue.enqueueMessage(msg,uptimeMillis)这个方法,这里的queue就是looper构造方法中创建的那个消息队列
//MessageQueen的enqueueMessage方法 boolean enqueueMessage(Message msg,long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) { if (mQuitting) { IllegalStateException e = new IllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG,e); msg.recycle(); return false; } msg.markInUse(); msg.when = when; Message p = mMessages; boolean neeDWake; if (p == null || when == 0 || when < p.when) { // New head,wake up the event queue if blocked. msg.next = p; mMessages = msg; neeDWake = mBlocked; } else { // Inserted within the mIDdle of the queue. Usually we don't have to wake // up the event queue unless there is a barrIEr at the head of the queue // and the message is the earlIEst asynchronous message in the queue. neeDWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (neeDWake && p.isAsynchronous()) { neeDWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (neeDWake) { nativeWake(mPtr); } } return true; }
MessageQueen虽然名字是一个队列,但实质上他是一个单向链表,这个结构能快速进行插入和删除 *** 作。从上面源码可以看出来,主要是按照发送消息的时间顺序将msg插入到消息队列中。接下来我们就需要从消息队列中取出msg了。这时候就需要调用Looper.loop()方法。
public static voID loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the IDentity of this thread is that of the local process,// and keep track of what that IDentity token actually is. Binder.clearCallingIDentity(); final long IDent = Binder.clearCallingIDentity(); for (;;) { //不断从消息队列中取出msg Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable,in case a UI event sets the logger Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } //将msg交由handler处理 msg.target.dispatchMessage(msg); if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // IDentity of the thread wasn't corrupted. final long newIDent = Binder.clearCallingIDentity(); if (IDent != newIDent) { Log.wtf(TAG,"Thread IDentity changed from 0x" + Long.toHexString(IDent) + " to 0x" + Long.toHexString(newIDent) + " while dispatching to " + msg.target.getClass().getname() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
可以看到Looper.loop()方法通过在一个死循环中调用Message msg = queue.next()将消息不断的从消息队列中取出来。queue.next()方法的作用就是从消息队列中取msg,唯一跳出循环的方式是MessageQueen的next方法返回了null。现在msg已经取出来,下一步就是怎样将他传递给handler了对吧。所以在死循环中还有一个方法msg.target.dispatchMessage(msg) ,而msg.target就是handler,在上面handler的enqueueMessage()方法中传入的msg.target = this,this就是handler本身,接下来就看看handler的dispatchMessage()方法
public voID dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
如果我们采用无参的构造函数创建handler,msg.callback与mCallback均为空,所以我们会调用handleMessage(msg),这样文章开头的那个实例整个流程就走完了,handleMessage(msg)会在handler实例所在的线程中执行。
//当我们通过这种方式创建handler时,dispatchMessage中的mCallback就不为null public Handler(Callback callback) { this(callback,false); }//Callback是一个接口,里面正好也有我们需要的handleMessage(Message msg),dispatchMessage中的 if (mCallback != null) 语句内的内容,就是我们需要重写的handleMessage(Message msg)方法 public interface Callback { public boolean handleMessage(Message msg); }
//当我们调用handler.post()方法执行异步任务时 public final boolean post(Runnable r) { return sendMessageDelayed(getPostMessage(r),0); }//getPostMessage(r)这个方法中我们看到给m.callback赋值了,就是我们传入的runnable接口 private static Message getPostMessage(Runnable r) { Message m = Message.obtain(); m.callback = r; return m; }//最后在handleCallback方法中我们执行了它的run方法,这也就解释了为什么在子线程中可以用handler.post(Runnable r)更新UI private static voID handleCallback(Message message) { message.callback.run(); }
总结
梳理整个执行过程
1.调用Looper.prepare()方法,这是创建handler所必须的。在主线程中由于ActivityThread已经通过Looper.prepareMainLooper()方法创建过looper,所以在主线程中创建handler以前无需创建looper,并通过Looper.loop()来开启主线程的消息循环。
2.通过调用handler.sendMessage(message)方法最终会执行enqueueMessage(queue,uptimeMillis),enqueueMessage又会调用MessageQueen的queue.enqueueMessage(msg,uptimeMillis),这样消息就会被添加到消息队列中。
3.调用Looper.loop()方法在死循环中执行Message msg = queue.next(),不断的将msg从消息队列中取出来,同时执行msg.target.dispatchMessage(msg),将消息传递给handler,由handler来处理,如我们调用的handleMessage就是处理消息的方式之一。
异步处理机制流程图
从子线程进行UI *** 作的几种方式
AndroID 提供了几种途径来从其他线程访问 UI 线程。以下列出了几种有用的方法:
• Activity.runOnUiThread(Runnable)
• VIEw.post(Runnable) 这里的vIEw就是我们需要改变的ui控件
• VIEw.postDelayed(Runnable,long)
• Handler.post(Runnable,long)
但是,随着 *** 作日趋复杂,这类代码也会变得复杂且难以维护。 要通过工作线程处理更复杂的交互,可以考虑在工作线程中使用 Handler 处理来自 UI 线程的消息。当然,最好的解决方案或许是扩展 AsyncTask 类,此类简化了与 UI 进行交互所需执行的工作线程任务。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
总结以上是内存溢出为你收集整理的android异步消息机制 源码层面彻底解析(1)全部内容,希望文章能够帮你解决android异步消息机制 源码层面彻底解析(1)所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)