本教程为大家分享了AndroID毛玻璃效果的具体代码,供大家参考,具体内容如下
BlurimageActivity.java代码:
package com.siso.crazyworld;import androID.content.res.Resources;import androID.graphics.Bitmap;import androID.graphics.BitmapFactory;import androID.support.v7.app.AppCompatActivity;import androID.os.Bundle;import androID.text.TextUtils;import androID.vIEw.VIEw;import androID.Widget.EditText;import androID.Widget.ImageVIEw;import com.siso.crazyworld.utils.APP;import com.siso.crazyworld.utils.FastBlurUtil;public class BlurimageActivity extends AppCompatActivity { ImageVIEw image; EditText edit; @OverrIDe protected voID onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentVIEw(R.layout.activity_blurimage); image = (ImageVIEw) findVIEwByID(R.ID.image); edit = (EditText) findVIEwByID(R.ID.edit); findVIEwByID(R.ID.button2).setonClickListener(new VIEw.OnClickListener() { @OverrIDe public voID onClick(VIEw v) { String pattern = edit.getText().toString(); int scaleRatio = 0; if (TextUtils.isEmpty(pattern)) { scaleRatio = 0; } else if (scaleRatio < 0) { scaleRatio = 10; } else { scaleRatio = Integer.parseInt(pattern); } // 获取需要被模糊的原图bitmap Resources res = getResources(); Bitmap scaledBitmap = BitmapFactory.decodeResource(res,R.drawable.filter); // scaledBitmap为目标图像,10是缩放的倍数(越大模糊效果越高) Bitmap blurBitmap = FastBlurUtil.toBlur(scaledBitmap,scaleRatio); image.setScaleType(ImageVIEw.ScaleType.CENTER_CROP); image.setimageBitmap(blurBitmap); } }); findVIEwByID(R.ID.button).setonClickListener(new VIEw.OnClickListener() { @OverrIDe public voID onClick(VIEw v) { //url为网络图片的url,10 是缩放的倍数(越大模糊效果越高) final String pattern = edit.getText().toString(); final String url = // "http://imgs.duwu.me/duwu/doc/cover/201601/18/173040803962.jpg"; "http://b.hiphotos.baIDu.com/album/pic/item/caef76094b36acafe72d0e667cd98d1000e99c5f.jpg?psign=e72d0e667cd98d1001e93901213fb80e7aec54e737d1b867"; new Thread(new Runnable() { @OverrIDe public voID run() { int scaleRatio = 0; if (TextUtils.isEmpty(pattern)) { scaleRatio = 0; } else if (scaleRatio < 0) { scaleRatio = 10; } else { scaleRatio = Integer.parseInt(pattern); } // 下面的这个方法必须在子线程中执行 final Bitmap blurBitmap2 = FastBlurUtil.GetUrlBitmap(url,scaleRatio); // 刷新ui必须在主线程中执行 APP.runOnUIThread(new Runnable() { @OverrIDe public voID run() { image.setScaleType(ImageVIEw.ScaleType.CENTER_CROP); image.setimageBitmap(blurBitmap2); } }); } }).start(); } }); }}
activity_blurimage.xml内容:
<?xml version="1.0" enCoding="utf-8"?> <linearLayout xmlns:androID="http://schemas.androID.com/apk/res/androID" xmlns:tools="http://schemas.androID.com/tools" androID:layout_wIDth="match_parent" androID:layout_height="match_parent" androID:orIEntation="vertical"> <ImageVIEw androID:ID="@+ID/image2" androID:layout_wIDth="match_parent" androID:layout_height="220dp" androID:scaleType="centerCrop" androID:background="@drawable/filter"/> <linearLayout androID:layout_wIDth="match_parent" androID:layout_height="wrap_content" androID:orIEntation="horizontal"> <EditText androID:ID="@+ID/edit" androID:layout_wIDth="wrap_content" androID:layout_height="wrap_content" androID:layout_margintop="15dp" androID:hint="输入模糊度" /> <button androID:ID="@+ID/button2" androID:layout_wIDth="wrap_content" androID:layout_height="wrap_content" androID:text="转化毛玻璃"/> <button androID:ID="@+ID/button" androID:layout_wIDth="wrap_content" androID:layout_height="wrap_content" androID:layout_marginleft="4dp" androID:text="转化网络图片毛玻璃"/> </linearLayout> <ImageVIEw androID:ID="@+ID/image" androID:layout_wIDth="match_parent" androID:layout_height="240dp" androID:layout_below="@+ID/image2" /> </linearLayout>
utils文件夹下APP.java代码:
package com.siso.crazyworld.utils;import androID.app.Application;import androID.os.Handler;public class APP extends Application { private static APP sInstance; public static APP getInstance() { return sInstance; } /** * 在主线程中刷新UI的方法 * * @param r */ public static voID runOnUIThread(Runnable r) { APP.getMainHandler().post(r); } /** * app的入口函数 */ @OverrIDe public voID onCreate() { super.onCreate(); //初始化context sInstance = this; //初始化handler mHandler = new Handler(); } //qcl用来在主线程中刷新ui private static Handler mHandler; public static Handler getMainHandler() { return mHandler; }}
FastBlurUtil.cs代码:
package com.siso.crazyworld.utils;import androID.graphics.Bitmap;import androID.graphics.BitmapFactory;import java.io.BufferedinputStream;import java.io.bufferedoutputstream;import java.io.ByteArrayOutputStream;import java.io.IOException;import java.io.inputStream;import java.io.OutputStream;import java.net.URL;public class FastBlurUtil { /** * 根据imagepath获取bitmap */ /** * 得到本地或者网络上的bitmap url - 网络或者本地图片的绝对路径,比如: * A.网络路径: url="http://blog.foreverlove.us/girl2.png" ; * B.本地路径:url="file://mnt/sdcard/photo/image.png"; * C.支持的图片格式,png,jpg,bmp,gif等等 * @param url * @return */ public static int IO_BUFFER_SIZE = 2 * 1024; public static Bitmap GetUrlBitmap(String url,int scaleRatio) { int blurRadius = 8;//通常设置为8就行。 if (scaleRatio <= 0) { scaleRatio = 10; } Bitmap originBitmap = null; inputStream in = null; bufferedoutputstream out = null; try { in = new BufferedinputStream(new URL(url).openStream(),IO_BUFFER_SIZE); final ByteArrayOutputStream dataStream = new ByteArrayOutputStream(); out = new bufferedoutputstream(dataStream,IO_BUFFER_SIZE); copy(in,out); out.flush(); byte[] data = dataStream.toByteArray(); originBitmap = BitmapFactory.decodeByteArray(data,data.length); Bitmap scaledBitmap = Bitmap.createScaledBitmap(originBitmap,originBitmap.getWIDth() / scaleRatio,originBitmap.getHeight() / scaleRatio,false); Bitmap blurBitmap = doblur(scaledBitmap,blurRadius,true); return blurBitmap; } catch (IOException e) { e.printstacktrace(); return null; } } private static voID copy(inputStream in,OutputStream out) throws IOException { byte[] b = new byte[IO_BUFFER_SIZE]; int read; while ((read = in.read(b)) != -1) { out.write(b,read); } } // 把本地图片毛玻璃化 public static Bitmap toBlur(Bitmap originBitmap,int scaleRatio) { // int scaleRatio = 10; // 增大scaleRatio缩放比,使用一样更小的bitmap去虚化可以到更好的得模糊效果,而且有利于占用内存的减小; int blurRadius = 8;//通常设置为8就行。 //增大blurRadius,可以得到更高程度的虚化,不过会导致cpu更加intensive /* 其中前三个参数很明显,其中宽高我们可以选择为原图尺寸的1/10; 第四个filter是指缩放的效果,filter为true则会得到一个边缘平滑的bitmap, 反之,则会得到边缘锯齿、pixelrelated的bitmap。 这里我们要对缩放的图片进行虚化,所以无所谓边缘效果,filter=false。*/ if (scaleRatio <= 0) { scaleRatio = 10; } Bitmap scaledBitmap = Bitmap.createScaledBitmap(originBitmap,false); Bitmap blurBitmap = doblur(scaledBitmap,true); return blurBitmap; } public static Bitmap doblur(Bitmap sentBitmap,int radius,boolean canReuseInBitmap) { Bitmap bitmap; if (canReuseInBitmap) { bitmap = sentBitmap; } else { bitmap = sentBitmap.copy(sentBitmap.getConfig(),true); } if (radius < 1) { return (null); } int w = bitmap.getWIDth(); int h = bitmap.getHeight(); int[] pix = new int[w * h]; bitmap.getPixels(pix,w,h); int wm = w - 1; int hm = h - 1; int wh = w * h; int div = radius + radius + 1; int r[] = new int[wh]; int g[] = new int[wh]; int b[] = new int[wh]; int rsum,gsum,bsum,x,y,i,p,yp,yi,yw; int vmin[] = new int[Math.max(w,h)]; int divsum = (div + 1) >> 1; divsum *= divsum; int dv[] = new int[256 * divsum]; for (i = 0; i < 256 * divsum; i++) { dv[i] = (i / divsum); } yw = yi = 0; int[][] stack = new int[div][3]; int stackpointer; int stackstart; int[] sir; int rbs; int r1 = radius + 1; int routsum,goutsum,boutsum; int rinsum,ginsum,binsum; for (y = 0; y < h; y++) { rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0; for (i = -radius; i <= radius; i++) { p = pix[yi + Math.min(wm,Math.max(i,0))]; sir = stack[i + radius]; sir[0] = (p & 0xff0000) >> 16; sir[1] = (p & 0x00ff00) >> 8; sir[2] = (p & 0x0000ff); rbs = r1 - Math.abs(i); rsum += sir[0] * rbs; gsum += sir[1] * rbs; bsum += sir[2] * rbs; if (i > 0) { rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; } else { routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; } } stackpointer = radius; for (x = 0; x < w; x++) { r[yi] = dv[rsum]; g[yi] = dv[gsum]; b[yi] = dv[bsum]; rsum -= routsum; gsum -= goutsum; bsum -= boutsum; stackstart = stackpointer - radius + div; sir = stack[stackstart % div]; routsum -= sir[0]; goutsum -= sir[1]; boutsum -= sir[2]; if (y == 0) { vmin[x] = Math.min(x + radius + 1,wm); } p = pix[yw + vmin[x]]; sir[0] = (p & 0xff0000) >> 16; sir[1] = (p & 0x00ff00) >> 8; sir[2] = (p & 0x0000ff); rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; rsum += rinsum; gsum += ginsum; bsum += binsum; stackpointer = (stackpointer + 1) % div; sir = stack[(stackpointer) % div]; routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; rinsum -= sir[0]; ginsum -= sir[1]; binsum -= sir[2]; yi++; } yw += w; } for (x = 0; x < w; x++) { rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0; yp = -radius * w; for (i = -radius; i <= radius; i++) { yi = Math.max(0,yp) + x; sir = stack[i + radius]; sir[0] = r[yi]; sir[1] = g[yi]; sir[2] = b[yi]; rbs = r1 - Math.abs(i); rsum += r[yi] * rbs; gsum += g[yi] * rbs; bsum += b[yi] * rbs; if (i > 0) { rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; } else { routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; } if (i < hm) { yp += w; } } yi = x; stackpointer = radius; for (y = 0; y < h; y++) { // Preserve Alpha channel: ( 0xff000000 & pix[yi] ) pix[yi] = (0xff000000 & pix[yi]) | (dv[rsum] << 16) | (dv[gsum] << 8) | dv[bsum]; rsum -= routsum; gsum -= goutsum; bsum -= boutsum; stackstart = stackpointer - radius + div; sir = stack[stackstart % div]; routsum -= sir[0]; goutsum -= sir[1]; boutsum -= sir[2]; if (x == 0) { vmin[y] = Math.min(y + r1,hm) * w; } p = x + vmin[y]; sir[0] = r[p]; sir[1] = g[p]; sir[2] = b[p]; rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; rsum += rinsum; gsum += ginsum; bsum += binsum; stackpointer = (stackpointer + 1) % div; sir = stack[stackpointer]; routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; rinsum -= sir[0]; ginsum -= sir[1]; binsum -= sir[2]; yi += w; } } bitmap.setPixels(pix,h); return (bitmap); }}
运行结果如图:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。
总结以上是内存溢出为你收集整理的Android学习教程之图片毛玻璃效果(4)全部内容,希望文章能够帮你解决Android学习教程之图片毛玻璃效果(4)所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)